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ABSTRACT

jA syntactic method for the analysis of time-vcrying image patterns

is proposed and studied. This method utilizes translation scheed tU

model the time-varying properties of image patterns. A syfitot'a C

'deformation modei is first applied to transform the i-th image ir)tc the

(i+1)-th image of -n image sequence. Then the concept of transLtior ir.

ormal language theory is used as a mechanism to characterit" the

(jynamiz process of the image sequence. A formulation ot stochostic

"ransLation is also presented. A generalized syntax-directed tree

transLation model is proposed to hancle high-dimensionaL patterns. The

,eneraLized moael is coiparea with the conventiondL top-dowr dna

ottom-up trete translation models.

A traffic monitoriny orober, is anaLyzeu using the proposed tree

•ransLation model. Each input image is representeo as a tree struLture.

he proposed tree translation model is used to model the variation ol

,mage content between consecutive images. A parsing algorithm for tree

-ransldtion is applied to match moving objects (vehicles) in each pair

uf consecutive images.



CHAPTER 1

INTRODUCTION

1.1 Introduction

During the past two decades, there has been an increasing interest

in pattern recognition. Most of the developments in the theory and

applications of pattern recognition use the statistical approach L1-6j.

In order to represent the structural information contained in the

patterns, the syntactic or structural approach has been proposed L?-10D.

The precision of syntactic specification provides the recognition

procedure not only the capability of classifying patterns but also the

capacity of describing patterns. Recently, the problem of time-varying

image analysis has drawn great attention C15-20J. In this research, this

problem will be analyzed using syntactic method.

A syntactic pattern recognition system consists of 3 major parts:

(a) preprocessing and segmentation, (b) primitive extraction, ano (c)

syntax analysis. To analyze time-varying images, first of all, we need

to select.a proper representation method. Then a syntax analysis scheme

has to be devised.

In the past, string grammar has been applied to the problem of

shape analysis and waveform analysis, tree grammar has been applied in

the problem of texture analysis, fingerprint recognition, and scene

anplysis. What's needed here is some description method which can be



applied to represent and analyze general time-varying image patterns.

1.2 Survey

1.2.1 Pattern recognition

The many difterent mathematical techniques used to solve pattern

recognition problems may be grouped into two general approaches; nameLy,

the decision-theoretic approach and the syntactic approach. In the

decision-theoretic approach, a set of characteristic measurements,

called features, are extracted from the patterns; the recognition of

each pattern is usually made by partitioning the feature space L1J. Most

of the developments in pattern recognition research during the past

fifteen years deal with the decision-theoretic approach ano its

applications [1-6]. In some pattern recognition problems, the structural

information which describes each pattern is important, ana the

recognition process includes not only the capability of assigning the

pattern to a particular class, but also the capacity to describe aspects

of the pattern that make it ineligible for assignment to another class.

A typical example of this class of recognition problem is picture

recognition. In this class of recognition problem, The patterns under

consideration are usually quite complex and the number of features

required is often very large, which makes the idea of describing a

complex pattern in terms of a composition of simpler subpatterns very

attractive. In order to represent the hierarchical structurdl

information of each pattern, that is, a pattern described in terms of

simpler subpatterns and each simpler subpattern again described in terms

of even simpler subpatterns, etc., the syntactic approach has been
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proposed [7-10]. Tr'is approach draws an analogy between the structure of

patterns and the syntax of languages. Patterns are specitied ds being

built up out o1 subpatterns in various ways of composition, just as

phrases 3nd sentences jre buiLt up by concten.*ing words, ano words dre

built up by concatenating charactes. The simpLest subpatterns ure

calleo pattern primitives. The Language that provides the structural

description of patterns in terms of a set of pattern primitives and

their composition operations is sometimes called the pattern description

language. The rules governing the compositicn of primitives into

patterns are usually specified by the so-called grammar of the pattern

description Language.

A syntactic pattern recognition system can be considereo as

consisting ot three major parts, namely, preprocessing, Pattern

description or representation, and syntax analysis (Figure 1.1). The

functions of preprocessing incLude (i) pattern encoding ano

approximation; and (ii) filtering, restoration and enhancement.

An input pattern is first coded or approximatec by some convenient

form for further processing. Techniques of fiLtering, restoration or

enhancement are used to clear the noise and improve the quality of the

coded patterns. At the output of the preprocessor, presumably, we have

patterns of reasonably "good quaLity". Each preprocessed pattern is then

represented by a language-like structure. This pattern representation

process consists of pattern segmentation and primitive extraction. in

order to represent a pattern in terms of its subpatterns, we must

segmentize the pattern and, in the meantime,identify the primitives in

it. In other words, each preprocessed pattern is seqmentized into
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subpatterns lnd c)attern primitives baseo on prespecified syntactic or

composition opetrtions, ana, in turn, each subpattern is identifieu witn

a given set of pattern primitives. At this point, edch pattern is

representeu y j tet of primitives with speUc'ld syntactic operations.

The decision whether or not the representation is syntacticaLLy correct

wiLL be made by the "syntax anaLyzer" or "parser". When performing tne

syntax anaLysis or oarsing, the analyzer can usuaLLy produce a compLete

syntactic descriotion, in terms of a parsing tree, of the pattern,

provided the Latter is syntacticaLLy correct.

For proper representation of pattern structures, aifferent

Languages has been proposed. String Language has been appLiec in the

probLem of shape anaLysis and waveform anaLysis (Figure 1.2). Tree

Language has been appLied in the probLem of texture anaLysis,

fingerprint recognition and scene analysis (Figure 1.3). RecentLy

attributed grammar is proposed and PEE ( primitive-extraction-embeddeO

parser is desioned to increase cLassification performance E13-.

1.2.2 Time-varying image

The various methods appLied to the anaLysis of time-varying images

can be classifiec into two groups. For research in the first group

(cross-correLation technique and image differencing technique), anaLysis

operations are conducted at image pixeL LeveL directLy, whiLe for the

second group, actual analysis starts after some features (bounoary,

etc.) have been extracted from each individuaL image in the sequence.

These techniques are further described as foLLows:

Cro -r pti~n 1erhnioue C15,18,22,41,64,65,663: Leese et aL.

C18] qive a tyoicaL example. They compare two successive pictures with

.... • ... , ..... _2
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Figure 1.2 A rectangle and its pattern primitives
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Figure 1.3 Tree representation of a square object
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the first picture being divided into systematic sections (64x64 pixels).

Then for each section, some reasonable area of the second pii.ture is

searched for a good match to the original section. They form a cross-

correlation coefficient using the fast Fou'ier transform on the fuL,

gray values within the section. The cross-correlation coefficient is

computed for each pairing of the originaL section with a canaidate

section in the second picture. The candidate section which yielas the

maximum coefficient is chosen as the match. Then a motion vector is

computed as the distance and direction between the center of the

original section and the center of the match section. The motion vector

is essentialLy assigned to the section, not to any object within the

section.

Image differencing technique [23,30,31,46,47,6i,68,69,7O]: In

C46,47J, the image differencing technique is appLied to find the

variation between two images of the same scene. The images are

carefully aligned by both spatial coordinates and gray value. The

spatial registration is done by considering one image as the reference

image and then distorting the other image until they are aligned. The

distortion is a Localized procedure which operates on subregions of the

images. Cross-correlation technique is used to compute the amount of

distortion necessary to align a subregion with its corresponding

subregion in the reference image. After the spatial registration has

been completed, a point-to-point subtraction process generates a third

image which displays the variation between the given images.

Limb and Murphy C6'] report a hardware implementation of

subtractive method. In addition to the subtraction process between the
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corresponding pixels of two consecutive images, within-image comparisons

are made among pixels and their suitable neighbors. The within-image

comparisons are used to normalize the between-image comparisons. These

comparisons are essentially the absolute differences of the plxeL gray

values and are summed over the entire image. This yielos a velocity

estimate for the image as a whole and not for any specific object.

The research work in group II incluoes

[37,39,42,43,48,49,72,73,74,77: Chow and Aggarwal L43] develop an

algorithm to track moving objects in an image sequence. After

preprocessing of an image, they build a model which consists of the

objects extracted from the image. Each object is represented as a set

of feature values: area, centroid position, etc. The matching process

of moving objects between consecutive images is performed through the

comparison of these feature values. After the matching, the model is

then updated with new information. The analyzed results include the

number of moving objects and their corresponding velocities in the whole

sequence. Other similar works include [37,39,42,49,771.

Recently O'Rourke and Badler report a system for the analysis of

human motion images L73]. The model for human body is composed of

segments and joints. A joint is a unique point connecting two segments.

A segment is an abstract rigid body with an associated embedded

coordinate system. The surface of each segment is defined by a

collection of graphical primitives, called spheres, located at fixed

positions within the segment's coordinate system. There are constraints

governing the relations between different parts of the body. These

constraints arise from the structure of the body, gravity effect, etc.
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Based on the analysis of the past images, the system forms a motion

description which is comprised of a set of piecewise Linear functions.

Each linear function describes the Location-time relation of a specific

feature point. The model is updated with new information. The system

then predicts searching regions of the parts for the analysis of next

image. If the prediction fails for a specific part, then the system

terminates the analysis process for this part and works for others

hoping that the information from succeeding images will resolve the

confusion. The model presented here is essentially an attributed

grammar, but with a slightly different form. Since it is focused on a

specific object--human body, composed of 24 segments and 25 joints, the

dynamic process of the image sequence is represented as a structure-

preserved variation of attributed language. In other words, each image

is represented by a set of feature values and the whole sequence is

represented by a set of piecewise linear equations. Besides, it is not

known whether or not the relaxation process of uncertain part will

eventually be stable, which is the common problem in Yachida et al. L7?3

and Tsotsos et al. [74.

Tsotsos et al. C14] report a system for the analysis of the image

sequence of left ventricular wall motion. They propose a way to

represent motion concepts based on the semantic network theory. Each

motion concept is associated with and defined by a "frame." A frame is

definable by the user. Frames have an arbitrary number of "slots" that

form their parts. SLots come in two varieties: "prerequisite" and

"dependent." Prerequisite slots specify concepts that must be observed

before the frame can be instantiated, while dependents provide

j
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additional semantic components that are included aLong with the frame

concept on instantiation. For example, the concept of "area change" ano

"contract" is defined as follows:

frame areachange with

prerequisites

subj: contractile_object;

time int: time interval;

start a: area_ value;

end-a: area value;

end

frame contract is a area-change with

prerequisites

start a: such that

start a > end-a;

dependents

speed: speedv with

speed - (start a-end a) i timeint. duration

end

These two frames illustrate most of the "syntacticaL" construct of

their representation formalism. From the viewpoint of Fu L10] and Tsai

and Fu [14], the representation method of motion information describea

above is essentially that: each motion concept is represented as a set

of prespecified attributes, each of which has a special meaning.

Tsotsos et al. analyze the image sequence using hypotheses-cooperation

method: uncertain parts in an image are updateu using a relaxation

process [88], during which the iteration is not completed until a
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convergence to stable condition is achieved. It is not sure whether or

not the iteration process will always lead to convergence in every

uncertainty case.

Yachida, Ikeda and Tsuji [76] analyze the behavior of hedrt walL

motion by measuring the thickness of heart wall in each image. The

thickness of the heart wall is measured at a set of boundary points.

The thickness is determined as the distance between the points of the

internal boundary and the points of the external boundary intersecting

with a set of Lines perpendicular to the internal boundary. After the

feature extraction of the whole image sequence, the dynamic process of

the heart wall motion is represented as a 3-D surface map, with x-axis

being the spatial domain, y-axis being the time domain and z-axis being

the thickness. The motion of heart wall is analyzed by observing the

surface configuration. Heintzen et al. [933 also represent the

information extracted from the heart motion images as a 3-D surface,

while Garrison et al. [90,91,92,94,95] use a curve (volume-time) to

represent the dynamic process.

The various research areas of time-varying images are briefly

described as follows:

Aerial and satellite images: Evaluation of aerial and satellite

image sequences is an active area 'n the problem of time-varying image

analysis E15,18,20]. Wind velocities are estimated from cloud

displacements observed in a sequence of satellite images as regular

input data to weather forecasting. Hubert et al. [21] combine two or

more copies from a sequence of satellite images taken at 2U-30 minute

intervals over a period of 2-3 hours into a film loop which is
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continuously projected onto a digitizing tablet. An operator seLects a

cloud feature (e.g. cyclonic vortices, cold fronts) and marks its

position in the projection of initial and final frame from the filr Loop

, using the intermediate frames to securely track the selected featires.

The measured displacement of the selected feature is corrected for

distortion and transformed to an earth surface coordinate system. On the

hypothesis that positional changes of cLouds are solely affecteo by

horizontal winds, the resuLting cloud feature displacement is converted

into wind velocity.

Traffic monitoring: Several investigations have been reported to

detect moving vehicles in sequences of film or video-films of traffic

scenes and to track their motion. A reLiable solution to this problem

would not only allow to count vehicles, but in addition enable the

identification of vehicle type (car, truck,bus ,...) and the observation

of vehicle behavior for a variety of quickly changing traffic

situations. Wolferts C22] described an interactive setup to measure

vehicle velocity on time-lapsed film using cross-correlation to tracK

their images. Onoe et al. [23] evaluated video sequences for this

purpose. Jones [24] reported on real-time tracking of features on

vehicles in video-sequences. Jain et al. [25] used video-sequences of

traffic scenes to study the detection, isolation, tracking, and

description of moving objects.

Industrial automation: Application of visual sensors to industridL

automation appears to be another area of time-varying image problems

[26). Newmann C273 studies the tracking of an object on a simulatea

conveyor belt by instantiating 2-D relational models on straight line
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contour approximations to images of a scene that contained a moving

object. If tracking has to be performed under real-time constraints, one

reverts to registering greyvalue or binary templates or to the

identification of a feature that is charac-ristic for the object in

question and can be easily isolated within a search 4indow. Uno L28J

employed such techniques on using a TV-camera to detect the position oj

bolts and reinforcement ribs on moving steel moulds in order to control

a manipulator. Jones et al. C24] investigated real-time tracking

techniques to study the application of fast visual feedback to

industrial automation. Eskenazi £29] investigated a real-time tracking

capability based on greyvalue correlation by using the video sensing and

processing setup developed for the navigable robot. by simultaneously

tracking the same object in two stereo image sequences, it is able to

determine the object's 3-D trajectory. Using this technique to track a

stationary object from a moving robot, the robot's trajectory can be

determined in order to guide its navigation and to adjust the pan and

tilt of a stereo camera assembly on the robot for keeping the reference

object in the field of view.

Medical applications: Medicine provides a major area for image

sequence analysis. The subtraction of X-ray images obtained before and

after injection of roentgen-opaque material into the blood enhances the

resulting difference image for interpretation by a physician.

Digitization of X-ray film images facilitates the performance of

nonlinear operations such as compensation for film characteristics

during the determination ot the difference image. Although digitized

film images have to be aligned prior to subtraction, relative geometric
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distortions can usually be neglected. Therefore, the registration tends

to be much less involved here than with satellite images. If an average

of several digitized pre-injection images is subtracted from a post-

injection image, image components not affected by the injection of

roentgen-opaque material can be suppressed even more effectively

S30,313.

Sequences of X-ray images from the left ventricle have oeen

evaluated interactively by cardiologists to determine the left ventricle

volume or to search for abnormalities in ventricle wall motion. One of

the main problems consists in a reliable determination of the ventricle

outline in the X-ray image. Chow and kaneko L303 searcn a suitabLy

enhanced digitized X-ray film image of the left ventricle for subregions

with larger greyvalue variances. For such subregions, a mixture of two

normal distributions is fitted to the corresponding greyvalue histogram.

If an acceptable fit is obtained for a subregion a threshold is

determined which is used to classify the greyvalues of this subregion as

either interior or exterior to the left ventricle. In this way, a series

of 25 left ventricular contours is derived automatically covering

approximately one cardiac cycle.

Injection of radioactive nuclei into a peripheral vein and

subsequent recording of their decay gamma rays by a scientigraphic

camera provides another way to obtain images of the Left ventricle.

Although these scientigraphic images offer even Less contrast than good

X-ray images, Hachimura et al. C32] were able to determine the Left

ventricular contour in such scientigraphic image sequences. by aetaileo

analysis of the left ventricular contour obtained at the end-diastole
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and the end-systoLe they attempt to cLassify the observed Left

ventricuLe wall motion into a normaL and an abnormaL category. Based on

a time series of nine scientigrapnic images observed over IUU msec

intervaLs after the end-diastole they eadte the Left ventrlcuLdr

volume and pLot it versus time.

A 3-D distribution of greyvaLues refLecting the spatiaL

configuration of organs in a Living body can be aeterminea oy

computerized tomograpny. A three Layer approximation to such d

description for the tnorax of a Living dog is given oy Johnson et aL.

[33]. If position ,size and shape of an organ varies with time as in tne

case of the Left ventricLe, such a variation can be representeo by a

time series of 3-D greyvaLue distributions which can be considered as d

four-dimensional greyvalue distribution. For this purpose, Herman drn

Liu C34] generalized a search algorithm by Liu L35i for tht

determination of a 2-D surface in a 3-D greyvaLue distribution such as

obtained by 3-D computerized tomography.

Information about dynamic changes in size, shape and position on

intact working organs is of great interest not onLy for the detection of

abnormaLities but even for a detaiLed understanding of their function.

This is not restricted to time series of 3-D greyvaLue distributions as

obtained from computerized tomography. Heintzen et aL. C36] emphasize

this strong connection between time sequences of sing~e-pLane X-ray

images and a better understanding of certain organ functions.

Beyond pure medical appLications, the evaluation of image sequences

spreads into biophysics and biology. For exampLe, Yachioa et dl. L3?j

observe fishes swimming in a vat by an overhead TV-camera connected to a
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video-tape recorder to study their behavior under a variety of stimuli

such as Lights or tones. About 8 frames per second are recorde for

periods between 2 and 30 seconds, resulting in sequences of 20-250

frames. Since the images of these moving objects are usually bLurred,

temporal as well as spatial greyvaLue differences are used to separate

the images of moving objects from those of stationary scene components.

Results from a previous frame are used to guide the feature extraction

process in the subsequent frame. They model the essential parts ot the

scene as it is presented in each frame and exploit such models obtaineo

from neighboring - prior as well as posterior - frames to deauce

uncertain parts or reanalyze them. Davenport et al. L38J also study the

stimulus-response behavior of microorganisms whose movement in a wet-

slide preparation under a microscope is recorded on video tape.

Ariki et al. L39] design an elaborate interactive facility for the

analysis of image sequences. They analyze the morphogenetic movement of

a dissociated cell of Xenopus laevis, a protozoon. Operator intervention

is required to check frame registration (Low Level interaction). Medium

level interaction is employed to define a model for the object that has

to be traced throughout the image sequence. Such medium Level

interaction enable the evaluation of a variety of real world scenes.

Takagi et al. [40] conduct a tracking problem in which to determine the

paths of gramules in a cultivated, living pancreatic cell recoroeo by

time-lapse cinemicrophotography at 1 second intervals for 5-10 minutes.

These granules carry insulin from ribosomes where it is produced to the

cell membrane. Analyzing the motion of these granules may tneretore

contribute to a better understanding of hormane production mechanism.
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One ef the problems in time-varying image analysis is the orope-

representation of information extracted from the image sequence. In

syntactic pattern recognition, d pattern is usually represented by .

Linguistic notion calLed a sentence. The sent' _e could be a string ,

tree or a graph of pattern primitives and reLations. Most o1 the

developments in syntactic pattern recognition research ourIng tne pos-

two decades deal with 'static patterns' ie.g. fingerprint, character,

chromosome shape). For static patterns, given an input pattern x ana a

set of pattern grammars representing different classes, parsing scheme

is applied for the classification of input pattern. WhiLe for time-

varying patterns, after finoing a proper representation, we need to not

only analyze the pattern at each single stage, but aLso test the

mechanism characterizing the dynamic process of the sequence.

1.3 Summary of the Contents

Chapter 2 is concerned with the time-varying pattern analysis using

a syntactic method. (For convenience, we use TV as an abbreviation of

time-varying. In formal language theory, a translation is defined as a

mapping from a language LI to another Language L2 . If we consider L1 ds

the set of possibLe patterns occurring at time t,,, L as the set of

oatterns at time t2 , then the relation governing the TV phenomena couLd

oe formulated as a translation problem. In chapter 2, we first explore

such a translation usilng a pattern deformation model 111] and tnen

consider the applicability of the translation models to time-varying

pattern analysis. Furthermore, in terms of the translation models, we

will formulate the problem of TV pattern analysis as one which can be

solved using traditional method, specifically, context-free programmed
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Language parsing.

In chapter 3, the concept of language translation is extended from

strings to trees using a generalized syntax-oirecteo model.

Conventional top-down and bottom-up tree translation mooels are compared

with the generalized model. It is shown tnat both top-down and bottom-

up models are special cases of the generaLizea model. A parsing

algorithm for this generalized tree translation model is also presenteo.

A traffic monitoring experiment is described in chapter 4. Each image

of the traf-ic scene is divided into a set of windows which is then

represented as a tree structure. A tree translation schema is app~ieo

to describe the motion of vehicles in the input image sequence. the

matching process of vehicles between consecutive images is performed

through a tree translation parsing.

Chapter 5 summarizes the results of this study and proposes

suggestions for further research.

I
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CHAPTER 2

SYNTAX OF TIME-VARYING PATTERNS

2.1 Introduction

In syntactic pattern recognition, a pattern is usuaLLy representeo

by a Linguistic notion caLLed a sentence [10]. The sentence coutd Oe

string, a tree, or a graph of pattern primitives and reLations. Nlost ot

the developments in syntactic pattern recognition research during the

past two decades deaL with "static patterns" (e.g. chromosome

classification, character recognition, and fingerprint classification).

For static patterns, given an input pattern x and a set of pottern

grammars representing different cLasses, error-correcting parsers are

used to cLassify x into one cf the classes L10,11.. While for TV

patterns, given an input seauence x1 , x2, ..., we need to not onLy

analyze the pattern at each singLe stage, but also test the mechanism

characterizing the dynamic process of the sequence.

In formal languagc theory, a translation is defined as a mapping

from a Language L to another Language L2 . If we consider L as the set

of possible patterns occurring at time tl, L2 as the set of patterns at

time t2, then the relation governing the TV phenomena couLd be

formuLated as a translation problem. In this chapter, we first explore

such a translation using a pattern deformation model L11J and then

consider the applicabiLity of the translation models to time-varying
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pattern analysis. Furthermore, in terms of the translation moaels, we

will formulate the problem of TV pattern analysis as one which can oe

solved using traditional method, specifically, context-free programmeo

language parsing.

2.2 Preliminaries

Definitions and notations that will be referrea to in tnis chapter

are summarized as follows C51-541.

Definition 2.1: Suppose that E-is an input alphabet ana A is an output

alphabet. We define a translation from a language L1 C * to a
*

Language L2  A as a relation T from ,* to A such that the domain of

T is L1 and the range of T is L2.

Definition 2.2: A syntax-directea translation schema (SDTS for short) is

a 5-tuple T = (N,-, a, R, S), where

(1) N is a finite set of nonterminal symbols,

(2) is a finite input alphabet,

(3) A is a finite output alphabet,

(4) R is a finite set of rules of the form A a, 8, where

a c (N U -)*, 8 E (N U ), and the nonterminals in 8 are a

permutation of the nonterminals in a,

(5) S is a distinguished nonterminal in N, the start symbol.

Let A * a, 8 be a rule. To each nonterminal of a there is an associated

identical nonterminal of 8. If a nonterminal B appears only once in a

and 8, then the association is obvious. If B appears more tnan once, we

use integer superscripts to indicate the association. This association
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is an intimate part of the ruLe. For example, in the ruLe

s( I) (2) (~B2) (1) (1) (2)
A -( CBS B()1C, the three positions in b(C6 are

associated with positions 2, 3, and 1, respectiveLy, in B (2)B (1)C. The

transLation Oetined by T, aenotec T(T), is the set of pairs

{(x,y)J(S,S) => (x,y), x E : and y c A }.

Definition 2.3: If T = (N,E, A, R, S) is an SDTS, then -(T) is called a

syntax-directed translation (SDT). The grammar G = (N,, P, S), where1

P = (A - alA - a, B is in R},

is called the input grammar of the SDTS T. The grammar

I I

G = (N, A, P , S), where P = (A - 5 JA * o, 8 is in R} is called the

output grammar of T.

Definition 2.4: An SDTS T = (N,- , A, R, S) such that in each rule

A - a, 8 in R, associated nonterminals occur in the same order in o and

B is called a simpLe SDTS. The translation defined by a simple SDTS is

called a simple SDT.

Definition 2.5: A simpLe SDTS T = (N, -, A, R, S) such that each rule

in R is either of the form A - aB, aB or of the form A - a,a where

A, B c N, a E E and a E A*, is called a regular SDTS. The translation

defined by a regular SDTS is called a reguLar SDT.
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Definition 2.6: For two strings, x, y C - we define a transformotion

T: * E * such that y c T(x). The following three transformations

are introduced C543:

(1) substitution error transformation

TS

WIaw2 1--- w1bw2, for aUl a, b E a $ b,

(2) deletion error transformation

TD

W 1a2 1--- W 2
, for all a e

(3) insertion error transformation

TI

W1 W2  wlaw2 , for all a c E where wI" W2 E .

Example 2.1: Given a sentence x = cbabdbb and a sentence y = cbbabbab,

then

Ts  TS T

x = cbabdbb I--- cbabbbb I--- cbabbdb I--- cbbabbdb = y

Definition 2.7: A context-free programmed grammar (CFPG) is a 5-tuple G

= (N,E, J, P, S) where

(1) N is a finite set of non-terminals,

(2) is a finite set of terminals,

(3) S is the start symbol in N,

(4) P is a finite set of programmed productions,
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(5) J is a finite set of production labels.

Each production in P consists of a label rcJ, a core production of

the lorm A * a where AcN, Q c (N U 1-)*, and a success branch

fiela and a failure branch fieLd each co isting of elements from

J. (This definition allows core production to be A - A, where

A E N and X is an empty string.)

A derivation or generation in G proceeds as follows: The first

production is applieo to the start symbol S; therefore, if proauction r

is applied to the current sentential form I to rewrite a nonterminal A,

and if y contains at least one occurrence of A, then the leftmost A is

rewritten by the core of production r and the next production ldbel is

selected from the success branch field of r; if the current sentential

form does not contain A, then the core of production r cannot be usea

and the next production label is selected from the failure branch field

of r; if the applicable branch field is empty, the derivation halts.

2.3 Formulation of TV Patterns as a CFPL

To recognize noisy syntactic patterns, various types of error

transformation models were proposed. Fung and Fu L52] proposed a

structure-preserved deformation model to handle substitution error for

string patterns. Lu and Fu £11] extended the model to include

substitution error, insertion error and deletion error, which were

introduced in the previous section. It is known that any pattern x can

be transformed into any other pattern y by a sequence of error

transformations. If we analyze a TV pattern xl, x,, ... xn from the

viewpoint of deformation model, then the TV phenomena can well be
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interpreted through a sequence of properly selected error

transformations which transforms x1 into x2, x2 into f "''" and Xn-1

into x

The deformation modeLs proposed by Fung and Fu, and Lu and Fu can

be fcrmulated in terms of translation schema. Consider patterns which

are described by a regular grammar. To handle substitution error,

regular SDTS T(N, E, A, R, S) can be constructed, where A = is the

primitive set, R is a set of rules of the form

A - aB, bB A, b e N, a, b E

For each rule A - a5 in the regular grammar and each terminal b ,

add a rule A - aB, bB to R. To include insertion error and deletion

error, for each rule A * aB in the regular grammar, add a rule A - aB,

aB to R for each a in Q UE 2 ... U-K Ufe)), where K is a parameter

and e is the empty string. For patterns which are describeo by a

context-free grammar, a simple SDTS can be constructed to model the

three types of deformation. First of all, the grammar is transformeo

into its Greibach Normal Form [51]. Then the construction procedure of

a simple SDTS is similar to that of a regular translation schema except

that: For each rule A - a$ in the context-free grammar, add A - aB, a8

for each a c( El U E2 ... U EK U {e}).

As far as error modeling is concerned, Lu and Fu's modei can handle

any number of errors occurred. For time-varying patterns, we restrict

the number of errors no Larger than K. The difference between Lu and

Fu's model and this translation model is that Lu and Fu's model hanOle

errors implicitly (or recursively) while this translation model must
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exoLicitLy specify the kind of errors it intends to cover. For exampLe,

in Lu and Fu's model E * a and E * bE recursively describe any numbera a a

of errors of inserting b in front of a. But in this ', nsLation model,

a translation rule A aB, a has to be included to cover each

individual error a - a even though a has no limitation. The parameter K

here onLy indicates that the number of errors a a a is finite. In other

words, k could be any positive integer but k < . Essentially we use

the translation schema to implement the deformation model. To make it

suitable for an n-stage TV pattern analysis problem with sequence xi,

x 2' -1 Xn+1, we give the following definition.

Definition 2.8: An n-stage SDTS is a 5-tuple

T (N, E, A, R, S), where

(1) N,-, A, S are defined as those of an SDTS.

(2) R is a set of rules of the form A 8 , ... , B. where

2* n
aci (N U Fj)*, E (N U A) and the nonterminals in B. are a

permutation of the nonterminals in a.

The translation defined by an n-stage SDTS T, denoted by T(T), is the

set

((x, YI" "" yn ) 1 (S, S, "', S) ===>(x, y" ", yn)., x "yl c A)

Thereafter the analysis of TV patterns becomes a translation problem.

Next we investigate the "parsing" of a translation beginning with a

definition:
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Definition 2.9: Let T be a one-stage SDTS

T(T) = {(x, y) I (S, S) (==> x, y)l.

Define the input Language

L1 as (x I (x, y) c T(T) for aLL y}

and the output Language

L2 as {y I (x,y) c T(T) for aLL x}.

The concatenation of L and L2 with respect to T is defined as the

set {xy I (x, y) C t(T)}, denoted by L12.

L12 C L"L 2, where L"L 2 = {xy I x c L,, y c L21.

Theorem 2.1: Let L1 and L2 be the input language and output Language

respectively of a reguLar SDTS T(N, ., 6, R, S) then L12 is a CFPL.

(L1 is a context-free Language.)

Proof: We shall prove the theorem by constructing a CFPG

G such that L(G) = L12.
* I

A CFPG G(N , , J, P, S) is constructcd as follows:

Step 1: N {A I A N) U (A2 1 A e N} U (S).

Step 2: F_' = U.

Step 3: Since T is a regular SDTS, each production in R is of the form:

A - aB, aB or A - a, a where A, B c N, a C 2, a £ A
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(1) Add S - S S {KIK is the Label of production beginning with

S }  ¢ to P.

(2) If A - aB, aB is a production in R such that A, B c N, a c

anid a e A*, then add the production to P:

A2 
* aB2  (KIK is the label of production beginning with BI} !

(3) For each input rule of R: A * aB where A, B E N and a -

add the production to P: A aB1 S(u) 4, where S(u) is the set of

labeLs of the productions added in (2) corresponding to the translation

rules with input rule A - aB.

(4) If A - a, a is a production in R, where A c N, a c and

* A2
C E A ,then add the production A * a € to P.

(5) For each input rule of R: A a where A c N and a € , da

the production to P: A a S(u) € where S(u) is the set of Labels of

the productions added in (4) corresponding to the translation ruLes with

input rule A * a.

Then we shall prove that L = L(G).

Let xy be in L1 2. Then by Definition 2.9 there exists a derivation

sequence

(S, S) ==> (aA1, A1)--- > (ala 2---a, aa2---n) = (x,y).

• . 6*

where ai c a . c A and A. c N. From the construction procedure of

CFPG G, it is known that: For each derivation step

(ala 2 ---aiA 2 ==> (ala 2---aiAi=i+1, --- ai+Ai+ 1 ' ---- i+lA i+i

there exist the productions
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A. -a A and A2 A2 in P
1 i+1 i+j i j+1 j+1

with the success fieLd of the first production containing the LdbeL of

the second production. Besides the success fieLd of the production
A2 A2 1 o

A * a1A 2 contains the LaoeL of the production A1 a A 1  for
i i+ i+ +2 i+2

1 < i < n. Therefore, there exists a derivation in G:

2 1 2 1 2 2
=> 2 => a1A1S a aAla1A1  a 1a 2 A2 a 1A=> ala 2 A2ca1 caA2

la2 n-i

n... 12 "' "n-1n = xy. Thus, L L(G). Similarly, from

the definition of G, it can be shown that L(G) C L12. Therefore,

L L(G).
12

Definition 2.10: Let T be an n-stage SDTS, L1 be its input Language, L2,

L3 ... Ln+ 1  be 'ts 1st, 2nd, - nth output Languages respectiveLy.

Define the concatenation of L1, L2, "'" Ln+ 1  with respect to T as

(xlX 2 "" Xn+ 1 I (Xlx 2 , .. , Xn+1) c i(T)} denoted as L12 3...n+I*

Theorem 2.2: Let T be an n-stage reguLar SDTS, LI, L2 ".., Ln+ I be its

input Language, 1st, - nth output Languages respectiveLy. Then

L12 *** n+1 is a CFPL. The proof is simiLar to that of Theorem 2.1
n

except that for the present case, N = U (A I A c N) U (Si, and for
i=1

each production in T, there are n+1 corresponding productions in G. (L1

is a context-free Language.)
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Theorem 2.3: Let T be a simple SDTS, L1 , L2 be its input and output

Languages respectiveLy. Then L12  is a CFPL. (L1 is a context-tree

Language.)

Proof: We sha L construct a CFPG G such that L)=L 12. Since T is a

simpLe SDTS, each production in T is of the form A - a, ,i where

A c N, ri c (NUI)*, b(NUA) a, have the same nonterminaLs with the

same permutation. G(N',!',J,P,S) is constructed as foLLows:

Step 1. N' = {AIIAFN) U {A2iAcN} U {S}.

Step 2. 1:' = I UA

Step 3. (1) Add S S1 S {KIK is the LabeL of production beginning

with S } I to P.

(2) For each production A - 1A1  ... onAnan+1, 61A 1 .

n A n in R, where AieN, ac , BicA , AcN, add
n nn+l 1 1 111 1

A C 1A I .. nAn n+1 (KIK is the LabeL cf proouction

2 2 2
A 61 A1  ... A ! y

and A B1 A1 ... B nA Bn+ l {KK is the LabeL of productions

beginning with the Leftmost nonterminaL of the present

derivation string) 0

Strictly speaking, there is Little restriction on the next

ster of a derivation after one appLication of the production

2
beginning with a nonterminaL of the form A2 where A is in N.

The onLy restriction is that the next appLiea production must

begin with a nonterminaL of the form Al where A is in N.

The proof that L(G)=L is similar to that of Theorem 2.1.
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CorolLary 2.1: Let T be an n-stage simple SDTS, LI be its input

language, and L ... Ln+l be its 1st, 2no ... nth output Languages

respectively. Then L 12...n+ is a CFPL.

Rosenkrantz C53] proposed the concept ot pr jrammea grammars as d

new device for generating Languages. It is shown tnat the cLass of CFPL

properly contains the class of context-free Languages ano is properLy

contained within the class of context-sensitive Languages. Writing a

CFPG is very much like writing a computer program ano is a rather

straightforward logical process compared with the task of writing a

context-sensitive grammar. Swain and Fu L54] further applied CFPG to

pattern recognition and proposed a stochastic syntax analyzer for CFPL.

Lu and Fu [11 then proposed an error-correcting parsing algorithms for

CFPL. By the previous discussions, it is known that a class of TV

patterns can be described as a CFPL. Then the analysis of TV patterns

becomes the parsing of a CFPL which has been well developed by Fu et aL.

This fact is to say that some TV pattern analysis problems can be

thought of as parsing of a CFPL. In other words, we can infer a CFPG to

interpret or to generate the time-varying process. A CFPL parser can be

used to classify an input pattern sequence. ActuaLly the parsing task

can be performed by directly building a parsing algorithm from the

translation schema instead of constructing a CFPG. This parser consists

of n interrelated "sub-parser" each of which Oeals with the

corresponding x. input string. The basic idea is that these n inputi

strings xl,...,x n need not be concatenated. However the relation among

these subparsers still has the spirit of a CFPL parser.
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in applying syntactic methods to pattern recognition, one

dimensional (string) grammars are sometimes inefficient in describing

high-dimensional patterns. For tne purpose of etfectively cescribing

high-dimensional patterns, Fu and Bnarcaa [553 introduced tne

application of tree systems to pattern recognition. Lu and Fu LI- I

proposed error-correcting tree automata for the recognition of ncisy

patterns. Five types of error transformation are introduced:

(1) the subst tution of the label of a node by another terminal symboL,

(2) the insertion of an extraneous LabeLed node between a node and its

immediate predecessor,

(3) the insertion of an extraneous Labeled node to the Left of alL tne

immediate successors of a node,

(4) the insertion of an extraneous Labeled .oce to the right of a noce,

(5) the oeletion ot a node of rank 1 or 0.

The three operations of insertions in rule (2), (3) and (4) are

named as stretch, branch, and split, respectively, according to the

relative pos'tion o4 tne inserted node to the original tree.

Appa'ently, the inverse operation of any type of insertion is deletion,

and the inverse of deletion operation is one of the three types of

insertion.

The deformation from a pure pattern to its noisy pattern can be

erformed through a sequence of application of these error

transformations. Through the use of the deformation modeL, the

transformation concept can also be applied to tree grammar to solve some

time-varying oattern analysis problems which are not easy to handle with

string grammar translations. After introducing a brief definition, we
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propose a tree grammar transLation schema. (For aetaiLed oescription

about tree grammar, refer to C12]).

Definition 2.11: A tree grammar Gt = (V,r,P,S) over <-,r> is expansive

iff each production in P is of the torm

X 0  X // or X * x where x__

I  - r(x)

and XO, X1,..,X r(x) are nonterminaL symboLs.

Definition 2.12: A tree SDTS T is a 4-tupLe (V,r,R,S) where V,r,S nave

the same meaning as for a tree grammar, R is a set of productions of the

form: A a, B such that a ana B nave the same nonterminals, 6 is tne

resuLt of appLication of a sequence of error transformations to a ano

the input grammar is in the expansive form.

An n-stage tree SDTS can be formed with each production being of

the form A - a, B B 2...n  where each B. is the result of some

deformation of a. The concept of "programmedness" can aLso be appLied

to tree grammar. Consequently, Lu and Fu's tree Language anaLysis

method can be used to analyze some more compLex TV patterns.

2.4 Stochastic Translation

Definition 2.13: A stochastic syntax-directed transLation schema (SSDTS)

E83J is a 5-tuple T = (N, XA,R,S) where

N = a finite set of nonterminals;

a finite input alphabet;

= a finite output alphabet;
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R = a finite set of rules of the form p: A - c,B for A in N, i in

(N U E )*, B in (N U t,)*, 0 < p < 1, with the nonterminals in A

being a permutation of those in B;

S in N 7 the startIng symooL.

Each nonterminaL *n the a portion of a ruLe has an identicaL, associatea

one in 3 (matching superscripts are used as needed for repeateu

nonterminals).

Definition 2.14: A schema T is:

(a) unrestricted if for each rule p: A a ,B -he probabiLity p is not

conditioned on other rules or events.

(b) proper if for each nonterminaL A the probaoiLities of aLL ruLes in

which A is the Leftside nonterminal sum to 1.

We consider only unrestricted, proper schema. TransLations f rom -7 to

n are produced as follows.

Definition 2.15: A translation form of T is defined recursiveLy:

(a) 1: (SS) is a form with associated S's;

(b) if o: (wAo,YA) is a form with the A's associated and 0: A a c,

is a rule, then pp: (waa,yB) is a form.

Definition 2.16: The stochastic translation from E* to A* produced by T

with starting symbol S is the set

t(T,S) = {(x,y,p)jx in F*, y in *,p= for aLL translation forms : (x,y)}

T defines a function PT: xA [ [0,1] such that
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n f(i)

PT(X,Y) E fI pij (x,Y)
i=I j=1

where there are n distinct standard derivations (e.g., leftmost) of the

translation form (x,y) with f(i) steps in the itn one, and p.j(x,y) is

the probability assigned to the jth rule of the ith derivation.

Definition 2.17: A schema T is:

(a) consistent if

E = 1.
x y

(b) simple if in each rule p: A 4 a,B the nonterminaLs in occur in

the same order as their associates in 6.

(c) regular if all rules have the form p: A - xB, yB or p: A - x,y

for A, B in N, X in E, y in A*.

Example 2.2: The occurrence of substitution error in a 4-bit binary coae

transmission can be described as follows:

T ((S,A,B,C}, {0,1}, (0,1}, R,S)

2c

R: S2-- 0 A, 0 A
12 S

ST--- I A, 1 A
P

S c1 A, 1A

ST-- 1 Alf 0 A
P

AA p 0 B, OA

A -  B, 1 B

A- 18,1 B
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-Ps

A 2 s 1 8, 0 BP
B-i-- 0 C, 0 C2%

B 0 C, 1 C

2 I -c I C, I C

1-Ps

8T-- 1 C, 0 C
1

P
C2 - , 0 11
82s

C1 P 1

C--- 1,1

C - 1, 0

'where P is the probability of correct transmission of each individuaL
c

bit, P is the probability of substitution error for each individual bits

and Pc + P = 1. The translation pair (0000, 0010) is derived as

follows:1

008A, 008

Pc

P1 000C, 001C

2 c 0000, 0010

The probability of this derivation is

1 1 1 1 3
c 2 x Ps x 2 Pc 6 c s

There is another way to describe the probabilistic property of a

stochastic SDTS. Suppose that A is a nonterminal of a stochastic SDTS

and there are n translation rules with A a a as leftside (or input rule

as defined before):

P1
A- a, 8,

P
A - a,
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an a

Then rewrite-these rules as

pP1/P

A- , A- B1
P2 /P

A- a2

P 7P
n n

n

where P = P.

This set of rules states that rule A * a can be applied for rewriting of

A in input sentence with probability p and if rule A a a is appliea,

there are n alternative rules for rewriting of A in output sentence with
P.
--I being the conditional probability of the ith rule. This variation of
p

rule format does not change the probability of the derivation of a
P.

translation pair. Suppose that A -- a,a.i is applied, then A - a ano
P./P Pi

A 1 . are also applied and P. = P x-.
1 i p

One advantage of this new form of translation rule is that it can

display the probability of translation pair, input sentence and the

conditional probability of output sentence. For instance, the

stochastic SDTS of example 2.2 can be rewritten as:

11 PC
S - 0 A, S- 0 A

P

1 s A

S - - 1 A, S- 1 A
P

sS O 0A

PC
A--- 0 ,A- 08B
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P
A -  1 6

A 1 8 A- 1 B

P
PC

A-B 18 A- 18
- C, -- 08C

P
1 B-i c

- 1 C, B- 1 C

PC

The Left part above is the set of rules for input Language and each rule

is followed byaset of rules f r outp~~t Langy~age. Thi input string

0000 is derived is follows: S - 0 A DOB -OOC 0000. The

P1

probability of this derivation is -6g Given this derivation, the output
P P P

string 0010 is derived as follows S 0 A 008 Z  001C E 0010. The

ccnditional probability of the output string 0010 given that 0000 is the
3

input string is P Ps. The probability of the translation pair

<O00U,O010> is L p3P16 c s*

Definition 2.18: A stochastic programmed grammar [10] is a 5-tuple

G (VN,VT,J,P,S), where

(1) VN is a finite set of nonterminals;

(2) VT is a finite set of terminals;

(3) J is a finite set of production labels;

(4) P. is a finite set of productions;



38

(5) S is the start symbol, S c VN'

Each production in P is of the form

(r) w - n S(U)P(U) F(W)P(W).

The core of the production is "w - n," where

W (VTU VN  VN (VT UVN)*

and

n C (VT U VN)*-

Each 4tochastic production in P has a distinct label, r E J. U c 21 ana

W c 2J  are called the success and the failure "go-to" fielas,

respectively. P(U) and P(W) are probability distributions associated

with the sets U and W, respectively.

In applying the stochastic production to an intermediate string

derived from S under leftmost interpretation, if contains the

substring w, then the leftmost occurrence of w is expanded into n and

the next production to be applied is selected from the success "go-to"

field U according to a probability distribution P(U). If does not

contain w, then C is not changed and the next production is selected

fromr the failure "go-to" field with a probability distribution P(W).r, r r
Suppose that S w 1 _> W2  n x is a derivation1>'" - n> x sa eivto of

x, where r. denotes the label of the pruduction used to directly derive

Wj+l from w . The probability, pi(x), associated hith the i-th

derivation of x is defined as the product of the conaitionil

probabilities P(r1)p(r2 1rl)...p(r nrn-1). The interpretation of the
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conditionaL probability p(rjirj_I ) is the probability of selecting r. as

the next production to be applied from the success "go-to" field if the

rj_l-th production is successfully applied. Otherwise, p(r Ir._ 1)

denotes the probability of selecting r. as the next production to be

applied from the failure "go-to" field of the rjl-th production. p(rI)

is assumed to be 1.

Definition 2.19: A stochastic programmed grammar G is said to oe a

stochastic context-sensitive, context-free, or regular programmed

grammar, if G is a context-sensitive, context-free or regular pg.

The stochastic language generated by a stochastic pg G i

, Pi Cx)>

L(G) = {(x,p(xO)Ix VT, S > x, for i= 1,...,k

and

k
EPi (X) = p(x)} ,

i=1

and k is the number of all distinctly different derivations of x from S

defined in G and pi(x) is the pr- iility associated with the i-th

derivation of x.

The stochastic language L(G) is called a stochastic programmed

language. G is said to be consistent if and only if

E p(x) 1.
xcL(G)

Low
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Theorem 2.4: Let LI and L2  be the input language and the output

Language, respectively, of a stochastic reguLar translation schema

T(NA ,R,S), then L12 is a stochastic context-free programmed language

(SCFPL). (L1 is a context-free language.)

Proof: We shall prove the theorem by constructing a SCFPG G such that

L(G) = L, A SCFPG G(N', E ,J,P,S) is constructed as follows:(G= 12.

Step 1. N' = {A 1 AcN} U A2 ACN} U s}.

Step 2. !Ut.

Step 3. Since T is a stochastic regular translation schema, each

production in R is of the form

P: A - aB, aB

or

P: A - a, a where A,BcN, aE *C.A 0 < P < 1

() Put all rules of R which have the same leftsiae nonterminal in

a group within which all rules with the same input rule are further

grouped together as follows:

P11: A , aiB1 , 1 1 B1

P12: A aiB1 , o,12B1

Pln(1): A , ai 18, '1n(l)Bl

P1: A * a2 B, a1_2

Pmn(m): A mmA Imn(m)Bm
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or

Pmn(m) A am, Cmn(m)

where 0 < P < 1,

A, B. r N,

a1ai i E]

c.. E A
13

n(i) is the number of rules having the

same input rule A a.B. or

A - a i ,

and m is the number of different input rules

for nonterminal A,

1 < i < m, 1 < j < n(i).

(2) For each rule P..: A + a Bi,i jB. of the group formed for A

in (1), add the rule to P:

2 2
A i+C B. S(U) P(U) € 1

where y is the assigned Label for this new rule, S(U) and P(U) are the

success field and the associated probability distributions. The

construction of S(U) and P(U) is explained by the following example:

Suppose that 8. = A and the set of rules in R is grouped as shown in1

(1). Then S(U) (y(1),y(2),...,y(m)}- and P(U) = iP1,P2,...,PmY where

y(k) is the label for the corresponding rule of the k-th input rule of

A, which will be described in (3), and Pi = Pil + PiQ + ... + Pin(i) is

the corresponding probability.

(3) For each different input rule A + ai8 i of the group formed for

A in (1), add the rule to P:
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A1 1!
y A 1 a.B S(U) P(U) 0111

where y is the assigned label for the rule, S(U) ana P(U) are tne

success field and the associated probability distribution respectively.

S(U) {y(l),y(2),...,y(n(i))}, where n(i) is the number of transLation

rules with the same input rule A - aiB i and y(k) is the label of the

rule in P corresponding to the k-th of these translation rules.

P(U) = {PP2, ...,P n(i) where P1 =P i/(P i+P i2+'.+Pin(i)

P1k = P ik(P i+Pi2''+P in(i) ) 1 k < n(i).

(4) For each rule P A ai,ij of the group formed for A in

(1), add the rule to P:

y A 2

where y is the label assigned to this new rule.

(5) For each different input rule A - a. of the group formea in

(1), add the rule to P:

1 .1
y A a S(U) P(U) 0 1y a1

where y is the label assigned for this new rule, S(U) and P(U) are the

same as defined in (3).

(6) Add the rule to P:

1 S - S1s2  S(U) P(U) 0 1

where 1 is the label assigned for this new rule,

S(U) = (y(1),y(2),...,y(m)} and P(U) = (PlP2,...,P m, where m is the

number of different input rules with leftside nonterminal S, y(l) is the

label for the corresponding rule in P of the i-th input ruLe,
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Pi =Pi+P i2+'..+P In(i n(i) and Pij are as defined (1).

Now we provej that L = L(G).

Let (xy,P) be in L1 2. Then there exists a set of different

derivation sequences. Consider one derivation sequence:

P P2 P

(S,S) 2(alt1A1  (a1a2A2,a1a2A2 (a a 2." ana 1 a 2.an (x,y).

From the above construction procedure of the SCFPG G, it is known that

for each derivation step
I

P.
(ala2 "''aiAi,alQ2 . iAi) o aA (ala 2 " 'a i+IAiCL A+)"

there exist the production rules in P:

y A. a AI  SU) PCI) 1
1 i+1 i+1

y A2  A2  S(U') P(U) 1
1 i+li+1

where S(U) contains y' and the corresponding probability in P(U) is

Pi/qi for some value qi. Besides there exists a production rule in P:

2[
S AZ -1 A S(U'') P(U'') 1i-i1 Al

where S(U''' contains y and the corresPonding probability in P(U'') is

qi. (Pi/qi) * qi = P.-

Therefore there exists a derivation in G-

1 1 S~ 2 q 1 1S2 P1 /q1  1 2 q2- S- aAIS aIAl 1 A 1 ....
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1 2  qPi+2 Pn/qn
a1a2 ' ai+1A i+1 1L2" 'i+A i+1 n'"

ala 2...an a 2... n xy.

q1"(P 1/ql)'q 2"(P2 /q2) ... qi(P i/qi) ... q n (Pn /q n)

Therefore, for each derivation of xy in T, there exists a unique

corresponding derivation with the same probability in G. Besides, two

different derivations of xy in T wiLL not map to the same derivation in

G. (In other words, it is a one-to-one correspondence). SimiLarly, for

each derivation of xy in G, there exists a unique corresponding

derivation with same probabiLity in T (aLso a one-to-one

correspondence). Therefore, there exists a one-to-one and onto

relationship between the set of derivations of xy in T and the set of

derivations of xy in G. Therefore,

(xy,P) c L 12 <==> (xy,P) c L(G)

L12 = L(G)

Theorem 2.5: Let L, and L2  be the input language ana the output

Language, respectively, of a stochastic simpLe syntax-directed

translation schema SSSDTS T(N, , ,R,S), then L12 is a SCFPL.

12
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Proof: We shall construct a SCFPG G such that L(G) = L12 A SCFPG

G(N', - ,J,P,S) is constructed as follows:

Step 1. N' = IA e N} U (A 2JA E N} U (S}

Step 2. Li A.

Step 3. Since T is a SSSDTS, each rule in T is of the form

P: A x,

where 0 < P < 1, A c N, c £ (N U F-)*: 6 , (N U A)*, and a,b have

the same nonterminaLs with the same permutation.

(1) Put all ruLes of R which have the same Leftside nonterminal in

a group within which all ruLes with the same input rule are further

grouped together. The process is demonstratea by an example for

nonterminaL A as follows:

Pli A al1", 1 i

P12 : A al., 12

P in(1) : A al 61 lin(1)

P A m 21 21

mn(m) a, mn(m)

where 0 < P < 1, ai E (N U j)* (N U A) , ,j have the-- lJ -, ij C ( ) , m " B j h v h

same nonterminals with the same permutation, 1 < j < n(i), 1 < i < m.

n(i) is the number of rules having the same input rule A + a, m is the

number of different input rules for nonterminal A.

(2) For each rule Pij: A i.,Bij of the group tormed for

nonterminal A in (1), where a i = aiA 1... in A nai(n+)

iAnB ii(n+n)
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aik 
-  ijk A Ak c N, 1 < k < n+l, n > 1,

add the rule to P:

A2 ejA2.. 2 ()PUI
2 iIij jn n ij(n+1) S(U) P(U)

where y is the label assigned for this new rule,

S(U) = (1),y( 2),...,y(m)}, P(U) = {PI,P 2 ,. ..,Pm}, y(k) is tne LabeL

for the corresponding rule of the k-th input rule of nonterminaL A,

Pk = Pkl+Pk2" '+Pkn(k)" 1 < k < m, m is the number of different input

rules of AI Pki is the probability of the L-th translation rule of the

k-th input rule for A1 , n(k) is the number of translation rules of the

k-th input rule for A1 .

(3) For each different input rule A a a of the group formed for A

in (1), where ai = ao0Al1-'ai(n-1)An in' 'ik £ , Ak £ N, 0< k < n,

n >,

add the rule to P:

y A 1 A A S(U) P(U) P 1
io l "  (n-l) nin

where y is the label assigned for this new rule,

S(U) = { y(1),y(2),...y(n(i))), P(U) = {P1,P 2 ,...,Pn(i) }, n(i) is the

number of translation rules with the same input rule A + ai, y(k) is the

label of the corresponding rule in P of the k-tn translation rule with

input rule A o i" Pk = Pik / (P i+P i2+...+P in(i)) Pik is the

probability of the k-th translation rule, 1 < k < nki).

(4) For each rule Pij: A , ai,aij of the group formed for A in

(1), where a. E , c A*
1 i)
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add the ruLe to P:

A2  . .. S(U) P(U) 1

where is the late' assigned for tnis new v-,

S(U) = {y(1,1),y(1,2),...,y(1,m(1)),y(2,1)...y(t,m(t))}

P(U) (P ,m() ,1" P t,m(t), where

t is the number of nonterminaLs in N, m(k) is the number of aifterent

input ruLes for the k-th nonterminaL, y(k,t) is the LabeL of the ruLe

added in (3) corresponding to the i-th input ruLe of the K-tn

nonterminaL of N, Pk,z = Pk,,1+P k,t,2+' '+Pk,z,n(k,)", n(k,Z) is the

number of transLation rules associated with the Z-th input ruLe of the

k-tn nonterminaL, Pk,z,1 P k,, 2 "'''" Pkare 22eir•l~l ki2* , z,n(k,z)

corresponding probabilities.

(5) Add the ruLe to P:

S S Is2 S(U) P(U) 1

where y is the LabeL assigned for this new ruLe,

S(U) = {y(1),y(2),...,y(m)}, P(U) = {PIP2,...,p , where

m is the number of different input ruLes for nonterminaL S, y(i) is the

Label for the ruLe added in (3) corresponding to the i-th input ruLe of

S, Pi = P il+P i2+.+P 'n (i ), n(i) is the number of transLation ruLes

associated with the i-th input ruLe of S, Pi1 ,Pi2,..'.Pin(i) are the

corresponding probabiLities of these transLation ruLes.
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The proof of L(G) = L12 is similar to that of theorem 2.4.

2.5 IlLustrative ExampLes

ExampLe 2.3: The following CFPG GSQ generates the Language

LSQ=an b nc nd nln>lY

which couLd be interpreted as the Language of squares of side Length n =

1,2,..., E10J

GSQ = (VN'VT'J'P'S)

where the vocabulary consists of

VN = {S,A,B,C,D}

a c
VT = {-, bt, -, d+}

the label set is

J = (1,2,3,4,5,6,7),

and the production set P consists of 7 rules:
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Success Failure
LibeL Core branch branch

I S aAB (2,3)
2 A - aAC {2,3}
3 A- D {4}
4 C (5} IA}

5 D ri D c (6
6 B a 7}
,7 D bc

However, from a different point of view, this grammar can also

describe the following TV pattern: (Xlx 2,X 3,x4)Ix i is a Line segment,

x. leads x b! 90 , and each x. has the same length.}1 i -1

Example 2.4: Zucker [56] used the concept of transformational grammar to

analyze texture. He first built an ideal texture. Then a set ot

transformation rules were used to transform the ideaL texture into a

real texture. Using translation schema, we can handle these probLems

too. For example, consider the pattern shown in Fig. 2.1. A 2-stage

tree SDTS with substitution error only can be used to characterize such

a time-varying image sequence. For an iteratively varying pattern (Like

TV texture), an n-stage tree SDTS can be constructed to model its

evolving process.

Example 2.5: With the deveLopment of CT (Computerized Tomography)

technique, a 3-D object is usually represented as a sequence of slices

(e.g. X-Y plane cross-sections aLong Z-axis). The translation schema

can be applied to describe these 3-D objects. Let {x x 2.' x n ) be a

sequence of X-Y plane cross-sections with Z-coordinate being 1,2,...n,

an n-stage SDTS can be constructed and then transformed to a CFPG. Here

a simple examplo is given for an object described by 4 slices (Fig.

2.2).
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Figure 2.1 An example of tree-type transform

( i.) (2 .) (3.) (Ac.)

Figure 2.2 A sequence of cross sections of a 3-D object

Loo.. _
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This object is described by the following "programmed" SDTS

T({S,A,B,C,D,E,F},Z,X, J, R, S)

where 1= { a / , b , c \ , d - }. R contains

Labe Core Success
Field

1 S-ABCDEF ,ABCDEF ,ABCDEF ,ABCDEF {2,3}
2 A-d ,d ,d ,d {4)
3 A-aA ,dA ,dA ,dA {5}
4 B-a ,ab ,ab ,a 16)

5 B-aB ,aBb ,aBb ,aB k7)
6 C-c ,c ,c ,c (8)
7 C-cC ,cC ,cC ,cC (9)
8 D-d ,d ,d ,d {10}

9 D-dD ,dD ,dD ,dD (11}
10 E-a ,ab ,ab ,a {121
11 F-aE ,aEb ,aEb ,aE (131
12 F~c ,c ,c ,c
13 F-cF ,cF ,cF ,cF (2,3)

Example 2.6: Here an exampLe is given to show the transformation of an

SDTS into a CFPG. The transformation procedure was described in theorem

2.3.

Suppose that an SDTS is given as follows:

T = (N, ,,R,S)

where N = {S,A,B,C,D}, = { a , b , c , d , e }. R contains

S * ABCD, ABCD, ABCD
A * aA , bA , bA

A a ,b ,b
B dB , eB , eB
B cB , eB , eB

B~d ,d ,d
C * cC , aC , bC

C aC , aC , bC
C~d ,a ,b
C * dC , C, bC

D +aD ,bD ,bD
D a ,b ,b
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A CFPG G(N',,J,P,S) is formed as follows:

The following steps follows the procedure of theorem 2.3.

Step 1: N' = (A IIA c NI U (A 2A E N} U (A 3A E N US):

i ii i= {S) U kA B,B ,C ,DS li=1,2,3}

Step 2: -'= U A U =-.iI

Step 3: (1) Add S -12S3 { I to P. The content of the success fielo

will be filled when all the rules are constructed.

(2) For the rule in R: S * ABCD, ABCD, ABCD

add

S *AB1C 1D 1 1

S2 * A 262 C2D2 ( I

S 3 A 3B 3C3 D3

to P

For the rule in R: A * aA; bA, bA

add

A . aA1 (I

A2  2 bA2

A3 ' bA3 {

to P

For the rule in R: A * a,b,b

add

A la kI

A2 *b( }

3A *bf

to p



53

and simiLarly for the rest of the rules of R. Then fill in those

success fields as described in theorem 2.3. Then for convenience,
replace A ,B ,C 1D , A2,B2C2D , A3,B3,C3,D 3 by A,B,C,D,E,F,G,H,W,X,Y,Z

respectively. The following is the resuLtino CFPG.

N' {S,S 1,S2,S oA,B,C,D,E,FG,H,W,X,Y,Z)

Success Success
Label Core FieLd Label Core Field

1 S $ (2) 17 X-*d L18,19)
2 S 2 ABCD (3} 18 C-cC (22)
3 S 3EFGH (4} 19 C-aC (22}
4 S +WXYZ (5) 20 C+dC {221

5 AaA (7) 21 C+d 23)
6 A-a (8) 22 G-aG (24)
7 E bE (9) 23 G-a (25}
8 E-b (10) 24 Y+bY 18,19,20,21}

9 W-bW k5,61 25 Y-b (26)
10 W~b (111 26 D-aD {28Y
11 B-dB (14) 27 D~a (29)
12 BcB {14) 28 H-bH (30)

13 B~d {15) 29 H-b (31)
14 F~eF (16) 30 Z~bZ (26)
15 F-d (I) 31 Z-b
16 X~eX (11,12,13)

Example 2.7: The stochastic translation schema T(N, ,A,R,S) described

in Example 2.2 is transformed to a SCFPG G(N',,J,P,S) as follows:

Step 1. N' = (ALIA c N) U (A2 1A c N) U (S)

=(1 1 1 1 2 2 22
= A,A ,B ,C ,S ,A ,6 ,C ,S)

Step 2. = U = (0,1)

Step 3.1. Put the translation rules of T in the order described in

theorem 2.4, (They are already in order in ExampLe 2.2).

Step 3.2. For rule S -c OA, OA
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add to P: p S 2  A2 S(U) P(U) 0 1

For rule S -s OA, 1A

add to P: y S2 . IA2 S(U) P(U) 0 1

(y , S(U) and P(U) are given Later)

Other ruLes are Idded similarly.

Step 3.3. For the rules S -fc OA, OA and S ?IS OA, 1A

add to P: y S 1  OA1 S(U) P(U) 1 1

Other rules areladded similarly.

1
Step 3.4. For the rule C- 0, 1

add to P: y C2- 1 1 1

Other rules are dded similarly1

Step 3.5. For the rules C 2Pc 0, 0 and C 0 C, 1

add to P: y C1  0 C S(U) P(U) . 1

Other rules are added similarly.

Step 3.6. Add the following rule to P:

1 S S1 s2 S(U) P(U) 0 1

The final form of the SCFPG is

G ((S1 ,A 1 , B, C , S2,A2 , B2, C2, S), (0,1 ),J, PS)

P:

Label Core U P(U) W P(W)

S SS 2  2,3) 1 1 1

2 S1 * OA1  10,111 (PC" Ps S) 1

3 S1 * IA1  (10,11) (Ps" Pc} 1

1s 1
4 A 08 12,13) (P" Ps} 1

5 A 18 (12,13> (Ps" Pc ) 1



55

6 8 0C1  (14,15) Pc Ps

7 B 1C {14,15} (P PC 1

8 C1 - 0 (16,17) {Pc" Ps I

9 C1 -'1 (16,17} {Ps" Pc 12 2
10 S2 iOA 2  14,5) { ,} 1

1 111 S2  1 A2  4,5} { , }

12 A2 -B2 (6,7) 1
1 1

13 A2  1 B2  (6,71 {1 ,1 } 4 1

14 B2 0C 2  (8,9) 1 1 1}

1 2 C2  91 115 B { 8,9} It , }

16 C 0 1 1 € 1

17 C2  1 1 1I 1

2.6 ConcLusion

The time-varying pattern analysis probLem is investigated in this

chapter. The problem is analyzed through the use of deformation models

and translation schemas. It is shown that some time-varying patterns

can be characterized by a context-free programmed language. Therefore,

the well developed error-correcting string parser can be applied. The

proposed method can be extended to problems involving three-dimensionaL

patterns. Tree translation is proposed to analyze more complex TV

patterns. Stochastic translation is also presented to model the

stochastic properties of TV patterns.



56

CHAPTER 3

A GENERALIZED SYNTAX-DIRECTED TREE TRANSLATION MODEL

3.1 Introduction

In chapter 2, we have proposed a syntactic method for time-varying

pattern analysis. An input sequence xl, x2, ... , where x. is the

pattern representation at time ti, is anaLyzed through a translation

modeL which is defined as a mapping from a Language L1 to another

language L2 in formal language theory. Consider L as the set of

possibLe patterns occurring at time tI and L2 as the set of patterns at

time t2 . The relation governing the time-varying process of the

sequence is then formuLated as a translation problem. In this chapter,

the formulation of string translation is extended to trees using a

generalized syntax-directed model. The generalized model is compared

with the conventional top-down and bottom-up tree translation model. It

is shown that both the top-down and the bottom-up models are special

cases of the generalized model. A parsing algorithm for this

generalized tree translation model is presented.

Definitions and notations that will be referred to are briefLy

reviewed [57,58,59].

An alphabet Z is ranked by a function r:Z - N which assigns a rank

to each member of X. For each n, E = r-1 (n) denotes the set of symbols
n

in Z which have rank n. Intuitively, the rank of a symbol is the number
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of sons it has when it labels a node in a tree.

Let R denote the set containing left and right brackets and comma.

To avoid possible confusion, ranked alphabets are not alloweo to incluae

elements of fl. For a ranked alphabet Z, the set Z* of (finite Labeled)

trees over the alphabet L is the Least set of strings in (E U )* such

that

(1) E C E*" and

(2) for n > 0, b c Zn' and tl, t2, ..., tn E E,, bCtl, t2, ... ,

n *

Definition 3.1: If Z is a ranked alphabet and A is an alphabet, tnen

Z,(A), the set of trees in Z, indexed by A, is defined recursively as

follows.

1) Z U -c *

2) If b c Zn" n > 0, and tl,...,tn C E (A), then btl,...,t I

£ , (A).

Definition 3.2: A (nondeterministic) top-down tree transducer is a

5-tuple M = (Q, E, A, R, Q ) where

(1) Q is a finite set of states,

(2) E is a finite ranked alphabet called the input alphabet,

(3) A is a finite ranked alphabet called tne output aLphabet,

(4) Qo C Q is a set of starting states, and

(5) R is a finite set of rules,

R C U (Q x En) x (A U(Q x X))
n>O
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A rule is written in the form (q,b) * w, where a F Q, b c - ana

E(A U (Q x xn))* for some n, where Xn denotes the set {Xl, x, ..., x n

for n > 0 and X0 denotes the empty set. x. refers to the ith son of the

current input node.

The behavior of a top-down transducer is aefined inductively in

terms of the output produced from a tree starting in state q.

Definition 3.3: Let M = (Q, E, A, R, Q0 ) be a top-down tree transducer,

o

and Let q e Q. For a tree t s Z,, the set of trees output from t by M

starting in state q is denoted by M(q,t) and is defined inductiveLy as

foLLows.

(1) If t = b to then M(q,t) = {wi(q,b) - w E R);

(2) If t = b~tl, ... , t n ] E then

M(q,t) = U w(<p,x.>:M(p,t.)IpcG, 1 < j < n).
(q,b)-weR

Definition 3.4: A nondeterministic bottom-up tree transducer L583 is a

five-tupLe M = (Q, E, A, R, F) where

1) Q is a finite set of states,

2) Z and A are finite input and output ranked alphabets,

respectiveLy.

3) F C Q is a set of finaL or accepting states,

4) tfln=Anfn=Aflx= , and

5) R is a finite set of transition ruLes such that every ruLe in R

is either of the form
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(b) (q,t), where b E Zo" q c Q, ano t c A*,

or of the form

(b,ql,..,q n ) (q,t), where n > 0, b n n, q, q ,...,q n  E Q, and t E ',Xn).

The behavior of a bottom-up transducer on an input tree is oefinea

inductively as follows.

Definition 3.5: Let M = (Q, Z, A, R, F) be a bottom-up tree transducer,

and Let q c Q. For a tree t e Z,, the set of trees which M can output

from t ending in state q is denoted by M(q,t) ana is aefinea inductiveLy

as follows:

(1) For b c £, M(q,b) = {wib - (q,w) c R),

(2) For t z btt,...,] Z,,

M(q,t) = {vjfor some rule (b,ql,...,q n  (q,w) c R,

some i, 1 < i < n, and sone u. C M(qi,ti), V E W(x :ui)}

Definition 3.6: A generalized syntax directed translat on (GSDT) L5(J is

a four-tuple F = (G, A, r, R), where:

(1) G = (V, Z, P, S) is a proper context free grammar;

(2) A is a finite set of output symbols;

(3) r is a finite set of distinct translation symbols of the form

T i(A), where i is an integer and A is in V - (S}, plus the symboL SI .

Whenever it is possible to do so without confusion, we will denote T (A)

by Ai. We calL Ai the i-th translation symbol associated with A.

(4) R is a function which associates with each production A - a in

P, a set of semantic rules (A = 01, A2 = 62,..,A m =m), in which each
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is a -- rini in (r U A)*, such that all translat ion symbols uuoearino

in ?. are transLat'on symboLs associated with nontermindLs appearing in

For eacn x ;rn L We ''inc F(x), -h.N of outputs of x a-s

ftc.lows

(1) If x 4, nc In 1(G), then F(x) = .

(2) If x is in L(G), then each parse tree with yiela x defines an

element y in F(x), which is the value of the translation symboL S1

associated wth th root. The value of S!  is computed bottom-uo as

fol ows:

(i) With each Interior node N of the parse tree LabeLed A a are

associated the translation symboLs A1 , A2, ... , A, which are atL the

transLation symbols associated with A. The values of these translation

symbols at N are computed using the semantic ruLes and the values ot the

translation symboLs at the descendants of N as follows.

(ii) Suopose O is xo., 1B2 x 2 ... BkXk, where x, is in Z ano b is

in V, 0 < j < k. Suppose A = yC C ... ClyL is the semantic ruLe

for A., where y is in A and C. is a translation symbol in F associated

with Bh for some I < h4 < k. Then v(A.), the vaLue of Ai at noce N, is

the string yV(C1)YV(C2 )Y2  v(C n , where v(Cj) is the value

of C. at the descendant of N whih is LebeLed by a Bh production.J

T(F), the translaticn defInea by F, is the set {(x,y)jy c F(x)}.

Example 3.1: Let F = (G, {a,b), {S, A1 , A2, 81, 8)), R), where the

productions of the grammar and the associated semantic rules are:

Productions Semantic rules
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(1) S A S A A,

(2) A - aAbB A1 = aA1B1

A2 =A 2B2

(3) A * oAaB A1 = dA 1 BI

A2  OA2 B2

(4) B A B, AI

B2 A 2

(5) A A =F

A2

F defines the translation {(w,ab I)i > 0 and w E {a,b}*, such that w

has i a's and i b's}.

3.2 Generalized Syntax-Directed Tree Translation

A top-down tree transducer (TDTT) does not specify an input

Language, it assumes that all trees in Z, are input sentences. A

bottom-up tree transducer (BUTT) does specify an input language, which

is a subset of E,, but given an input tree sentence, even though a BUTT

can copy a subtree in an output sentence many times, all the copies of a

subtree are the same, while a TDTT can generate different copies of

subtree. There exist translations which can be implemented by a TDTT,

but not by a BUTT. There also exist translations which can be

implemented by a BUTT, but not by a TDTT.

Example 3.2: An arithmetic expression involving addition,

multiplication, a constant c, and a variable y may be represented by a

tree over the alphabet E = {+, *, y, c, where + and * have rank Z ano y
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and c have rank 0. We construct a deterministic top-down transducer M

which takes the formal derivative with respect to y of the expression

represented by an input tree in Z,. Let A = E U(1,0) where I and 0

have rank 0. Let M = ({D,}, Z, , R, {D}) e a top-down transducer,

where R contains the folLowing rules:

(D,+) +L<D,xl1>,<D,x2 >j,

(D,*) - +[*[<D,x 1 >,<I,x 2 >3, *[<I,x 1 >,<D,x 2 >]],

(D,y) - 1, (D,c) * U, (I,o) - a for a F{y,c}, and

(I,G) * cC<I,x 1 >,<1,x2 >J for a 0{+,,}.

The tree transLation defined by M cannot be defined by a BUTT. The

main reason is due to the second rule above. With this ruLe, the

subtree x1 of an input tree *[xl,x 2 3 is translated two times as <D,x 1>

and <I,xl> respectively. For instance,

/\ 2

y/c /\ /\
y o

1 c y 0

In the above translation, y is translated two times differently (the

first time as 1 and the second time as y). But from the definition of

BUTT, we know that BUTT cannot generate this tree translation pair. On

the other hand, a translation which contains only a single tree pair

{( /\ , /\ )} cannot be implemented by a TDTT because a TDTT cannot
y c r o

specify finite input tree set. While this translation can be
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implemented 
by the 

following 
BUTT:

M=({qo,ql,q 2}, {y,c,*}, {1,0,+), R, {qo})

R=y (q1,1), c (q2,0), (*,ql q 2) (q,  +Lxlx2)}.

Based on the definition of GSDT given by Aho and Ullman, we propose

a similar definition for trees, called the generalized syntax-directeo

tree translation (GSDTT). It can be shown that both TDTT and BUTT are

special cases of GSDTT.

A GSDTT is defined as follows:

Definition 3.7: A generaLized syntax-directed tree translation (GSDTT)

is a four-tuple F = (G, 6, r, R), where:

(1) G = (V, Z, P, S) is a regular tree grammar;

(2) A is a finite set of output symbols;

(3) r is a finite set of distinct translation symools of the form

T .(A), where i is an integer and A is in V - {S}, plus the symbol SI.

whenever it is possible to do so without confusion, we will denote T.(A)

by Ai. We call Ai the i-th translation symbol associated with A.

(4) R is a function which associates with each production A - a in

P, a set of semantic rules {A1 = al, A2 = s2-" .."' Am = Bm}" in which

each 0i is a tree in (r U A),, such that all translation symbols

appearing in a. are translation symbols associated with nonterminals1

appearing in a.
,

For each x in Z we define F(x), the set of outputs of x as

follows:

(1) If x is not in L(G), then F(x) = 0.

i 1J
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(2) If x iF in L(G), then each parse tree with yiela x defines an

element y in F(x), which is the value of the translation symbol S1

associated with the root. The value of S1  4s computed bottom-up as

folLows:

(i) With each interior node N of the parse tree labeled A - a are

associated the translation symbols A1 , A2' ..., AM, which are all the

translation symbols associated with A. The values of these translation

symbols at N are computed using the semantic rules and the values of the

translation symbols at the descendants of N as follows.

(ii) Suppose {BjO i < j < k for some k} is the set of nonterminals

appearing in a, Ai B. is the semantic rule for A. and (CJ1 < j < k

for some L) is the set of translation symbols appearing in 6. with C

being the translation symbol associated with Bh . Then v(Ai), the value

of Ai at node N, is the tree Bi with each Cj being replaced by v(C)

where v(C.) is the value of C. at the descendant of N which is labeled
3 3

by a 8h production. T(F), the translation defined by F, is the set

j{(x,y) ly c F(x)}.

Theorem 3.1: For any BUTT M = (Q, E, A, R, F) there exists a GSDTT F

(G, A', , R') such that M and F define the same translation.

Proof: Given M=(Q, Z, A, R, F) we can construct F=(G, A', F, R') as

follows: Let A' = A, and G = (V, E', P, S) where Z' = E. V={A Cq q ,

qoq
S = A ,o q 0is the accepting state and P and R' are formed as follows:

For each (b) - (q,t) in R where b c q c Q; t A * add Aq - b, Aql

t to P, R' respectively. For each (b, q1" "', qn n (q,t) where n>U, b

En", qi r Q , t c A (X h ) add Aq * bEA q, A q2, ..., A C], A q t' to P,

R' where t' is the same as t except that each X. in t is replaced by
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Aqi"

The next thing is to show that M and F define the same translation:

If <b,t> c M, b e Zo" t C A,, it can be found straightforwaro from the

construction procedure of F that <b,t> e F.

If <r,t> c M, the depth of r is k and if the statement that <r',t'>

M => <r',t'> c F holds for all <r',t'> where the depth of r' is K-i,

then suppose r=b~rl, r2, ... , rn3 where b c n" ri C *" the depth of rI

< K-I. Since <r,t> e M, there exists a rule in R of the form (b, ql"

qn (qo u) where qo is accepting state and u E A(Xn), besioes,

t is equal to the tree of u after each X. in u being replaced by u i

where ui c M(qi,ri), then there exists a rule in R':A * u with each

x of u being replaced by A and a corresponding ruLe in P : A q

b[Aql, Aq2 ,  Aq n , and A q r1 (* by theorem in Brainerd L59J) the

depth of all r1 < k, therefore by induction we know that <r,t> C M =>

<r,t> c F. Similarly, we can show that <r,t> E F => <r,t> c M therefore

M and F define the same translation.

Theorem 3.2: For any TDTT M=(Q, Z, A, R, Q) there exists a GSDTT F=(G,

A', F, R') such that M and F define the same translation.

Proof: We prove it by constructing a GSDTT F=(G, A', r, R') as follows:

Let G=(V, z', P, S), E' = Z, A' = A, such that L(G) = E (* the

existence of G is proved in Brainerd [59]). Let r = V x Q i.e. suppose

the number of states in Q is m, then AI, ... , Am c r for A c V. For

each rule in R :(qb) - w, where q c Q, b cE n" w C A,(Q x Xn ) add to

R': Aq u, where u is the tree of w after each q'Xi being replaced by

B iq, corresponding to each rule A * blB1 B2, ..., B n in P. Next step

is to prove that <r,t> c M <==> <rt> c F: If <r,t> c M and r=b, b L E
0

r
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then there exists a rule in R : (q ,b) * t therefore there exists a ruLe

in P : S - b, and a rule in R': S t so <b,t> c F. If <r,t> E M ana

r=brl,r 2, ... rn], b c n then there exist a rule in R : (q ,b) - t

where t' c A,(Q x X n ) and the terminal part of t' can be matched with t.

Therefore there exists a rule in P : S - bLB1 , B2 , ... , BnI and a ruLe

in R': S q u where B. c V, u is the result of replacing each q in t'

by B. If the statement that <r,t> c M => <r,t> c F is true for aLL r

of depth K-I then it's also true for all r of depth K. We already know

that it's true for K=I therefore by induction we know that <r,t> C M =>

<r,t> c F. Similarly, it can be shown that <r,t> E F => <r,t> c M. So,

M and F define the same translation.

Example 3.3: Let E = {+,*,y,c} be ranked alphabet, where + dncl * hdVe

rank of 2, and y and c have rank 0. We construct an NGSDT G which tdkes

the formal derivative with respect to y of the expressions represented

by input trees in E*,, where c represents a constant. Let A

(+,*,1,0,y,[,J}. Let G=({d,IY,Z,A,R,{d}), where

R={(d,+)-C(d,x1 )+(d,x 2 )3,

(d,-) [L(d,xl1) (I,x 2 ))+ (I,Xl1)'(d,x 2) ,

(d,y)*1,(d,c) O} U
{(i,c) alac{y,c}} U

his(TT(ila b ) G(i,x 2brl{eb-

This TDTT can be replaced by a GSDTT:
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F=(G, , ,R) G=(V, ,P, S)

P R: P: R:

S-y SI l S C SI-0

A- Y A A C A, -

A2  y 
A2 . C

B y B1  1 B C 1 0

B2 y B2 -C

S +S 
+ \

A AB A B

/\1/ /\,/
AA B 2 A IBB

1 2 2 2

1 AA

A B A A B

A2 B2 AA2 2
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B-. + BI + + B + B1 +/\ /\ \1 /
A AA B A B A BE3 + A\ /

A22 82 12

A2  B2

Algorithm 3.1: Parsing for GSDTT.

Input. A GSDTT F=(G, A, r, R), G=(V, Y, P, S) and an input tree pair

<r,t>

Output. All the correct parses for <r,t>. If no parse exists output

"ferror".

Method.

(1) For each nonterminal A in V, order the alternates in P for A. Let

Aio be the index for the ith alternate of A. Let A.. be the index for10 13

the jth alternate in R with respect to A.o -n P.

(2) Let <u,v> be a new tree pair. A 4-tuple (X, b, L, K) will be used

to denote th~e configuration of each node in a tree:

,a) X denotes the nonterminal of the node before it is rewritten.

(b) b denotes the terminaL of the node after it is rewritten.

(c) L denotes the label of the production rule for rewriting the

node.
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(d) k denotes the sequence number for counting the sequence of

rule applications.

(3) let X = S, i=1, <u,v> = <(S, , 0, 1), ($1" , 0, 1) >.

(4) Select the first rule of P for X. j=1.

(5) replace node (X, , L, k) of u with rule X. in P. If X is X

biB I  82, ... , m , then replace the node with X, b, j, i)L(B1, 0 0,

i), . ., 0 O, i)J.

(6) Check compatibility for u and r, if compatible go to (7) else go to

(11).

(7) For each node (X,, , 0, k) of v, where n is any number, replace it

with rule Xjn in R. If a node in Xjn is a terminal b, it is written as

(X n, b, j, i), if a node in Xjn is a nonterminaL B , it is written as

(BmP , 0, i), go to (8).

(8) Check compatibility for v and t, if compatible, go to (9), else

(12).

(9) Check if there is any nonterminal node left in u, if yes, let X be

the next nonterminal, i=i+1, go to (4), if not, go to (10).

(10) Check compatibility for u and r, v and t, if compatible, find the

parse by tracing down tree u, report success and go to (12), if not, go

to (12).

(11) delete the subtree just being added to u, restore its root with

(X, , j, k). go to (13).

(12) delete the subtree just being added to u, restore its root with

(X, , j, k), delete the subtrees bein added to v, restore their roots

with (Xn' , j, k) go to (13).

(13) check if there are new rules avaiLable for X, if yes, set p=j+1.
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go to (5), if not go to (14).

(14) If X=S, then finished, exit. If not, then backtrack, take the

immediate father of node (X, , j, k) as new X, i=i-1, and go to (4)

(Figure 3.1 shows the flowchart for this aLgorithm)

ExampLe 3.4: The translation rules of the GSDTT defined in example 3.3

is Labeled, reordered and written as foLLows:

P: R:

( ($) S + y (S 1 1 ) Si 1

($20) S C (S2 1) S1 1 0

(S$30 ) S + (S$31) SI  +

A B A I  B1

(S40 ) S ( •S 4 1 ) S1 +

A1  B

A1 B2 A2  B1

(A10 ) A y (A 11) A. ,1 (A12 A2  y

(A20 ) A C (A21 A, 0 (A2 2) A2 C
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(A30) A (A31 )AI - (A32) A2

A B A 1 I  A2  a2

(A3 2 ) A2  +

A2 B2

(A40 ) A (A41) Al + (A4 2) A2

A B A2  B2/\ /\
A1  B2  A2  B 1

(B10) B + y (B11 ) BI * I (B12) B2 ' y

(B20) B C (B2 1 ) BI  0 (B22 ) B2  C

(B30) B( + (31 Bi32 B 2 - +

A A1 B1 A2  B2

(B40 B (B41 B1 + (B42 a 2

A B *A BA2 2

A B A B
A1 B2 A2 a1

The following diagram shows the analysis of the input tree pdlr
+ +

</\ , > with respect to this GSDTT:
c y 0 1
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yS>> S1> </\,s >
A B A B

+ '

< >

+ + 4

</\, /\ > < < \ , /,\ ,

y +A B0+B 1 B1 BA .

B A I

+ +

< /\, /\

AB B1

< +,

it A B A B

+ 4 .

;,uccess u,' anaysis

report and backtrack

A more deta ed Cdagram containing information about each noce's

configuration is shown as toUowsi
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(C, A4), (S1, , 3, I)>

1, I , 4 , 1 0, ,,>

<(, c, 2, 1), CS
1
, , 0, 1)>

<(S, +, 3, I)I(A, ,3, 1), kB1,, 3, 1)3, (51, 1 U, 1)>

<(S, t, 3, 1)[(A, , 3, 1), (B, , 1)1,

(SI, ., 3, 1)[(A1 , , 3, 1), (B1, , 1)P>

// I
<(S, €. 3, I)E(A, y, 1, 2), (B, , 3, 1)], <(S, 1 3 1)[(A, *, 4, 2)[(A,

CS, 4, 3, 1)[(Al, , 3, 1), (81, , 3, 1) D 4, 2), (B, 4, 2) , (8, , 3, I)),

(S1
, +, 3, I)N(A

I ,  , 3, 1), (61,

3, 1)3>

<(S, *, 3, 1)E(A, +, 3, 2)[(A,

3, 2), (1, , 3, 2),, (B, , 3, 1)Z,

(51, +, 3, I)C(AI, , 3, 1), (BI, . 3, 1))>

<(S, , 3, 1)CA, c, 2, 2), (B, , 3, 1J

($I, +1 3, 1)[(AI, , 3, 1), (BI, , 3, 1)>
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3.3 Stochastic beneralizea Syntax-Directea Tree TransLation

Definition 3.8: A stochastic generaLized syntax-directed tree

transLation (SGSDTT) is a four-tupLe F = (G, A, F, R), where:

I1) = (', ,_ -, S is reguLar tree Q';mar;

(2) t, is a finite set of output symboLs;

(3) 7 is a finite set of distinct transLation symboLs of the forr

T (A), where i is an integer and A is in V - {S}, pLus the symboL S,.~1
whenever it is possibLe to oo so without confusion, we will oienote T.(A)

by A.. We caAL A. the i-th transLation symbol associated with A.

(4) R is a function which associates witn a probability vaLue p,

0 < p < 1 each production A + a in P, and a set of semontic ruLes {A =

~, A c2  **. Am= ~~' n wich ach is tre ~ ~ ~ suo

associated with nonterminaLs aDpearing in .

Definition 3.9: An SGSDTT is:

(a) unrestricted i for each ruLe p: A 4' ( s the set it semantic

ru'.es asso1at2c with A - ) the orooabiLity o is not conait iorec

on other ruLes or events.

(b) proper f for each nonterminaL A the probabilities of aLL rutes in

which A is the Leftside nonterminat sum to I.

We consider only unrestricted, proper transLation.

Definition 3.10: The stochastic transLation from L, to A* produced by r

with starting symbol S is the set
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n f(i)
f(F,S) {(x,y,p)lx in E,, y in A,, P = n fl pij(x,y)}

i=1 j=1

where there are n distinct standard derivations (e.g., breaoth-first) of

(x,y) with f(i) steps in the ith one, and p ij(x,y) is the probabiLity

assigned to the jtn rule of the ith derivation.

Similar to the stochastic syntax analysis for context-free

programmed languages [103, depending on the type of stochastic seLection

for the next rule, we have two distinct types of stochastic syntax

analyzer for tree translation. The first type is one with a selection

method which searches for the most likely rule first, while the secono

type is one with a selection method which randomly selects a rule for a

nonterminal according to the distribution over all possible alternatives

for the nonterminal considered.

The stochastic syntax analyzer that searches for the most LiKeLy

rule first is a nondeterministic syntax analyzer in wOich the ruLes are

arranged in descending order of magnitude of their assoclateo

probabilities [54]. The first ruLe for each nonterminaL is the one witn

the highest probability, while the last ruLe for eacn nontermindL is the

one corresponding to the lowest probabiLity. CLearLy, this is

stochastic syntax analyzer with a fixed strategy LIU]. The pro.eaurk

for this analyzer is given in Algorithm 3.2. A flow chart is shown in

Fig. 3.2.

The stochastic syntax analyzer with a random strategy is formea

from the nondeterministic syntax analyzer by incorporatilng a stochastic

selection algorithm in selecting the next rule when alternatives are

available. At each step the conditional probability distribution is
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used in selecting the next rule among all available alternatives 00j.

Suppose that there are 3 translation rules for nonterminal A, y1 , Y2 and

w3 With PI" P2 " P3 being their respective probabiLities, and Yj has been

previously applied. After the backtracking, Y2 and Y3 are the only

available rules. Hence, either y2 or y3 can 'e seLected according to
' S

their conditional probability distribution P((2,3y 3 (#2,P3) where

U U

P2 = P 2/(P2+P3 ) and P3 = P3/(P2+P 3). The procedure for this analyzer is

given in Algorithm 3.3 and a flow chart is shown in Fig. ).3.

(Algorithm 3.2 of the SGSDTT parser with a fixed strategy is essentially

the same as Algorithm 3.1 of the nonstochastoc GSDTT parser. Algorithm

3.3 of the SGSDTT parser with a random strategy is dLmost the same as

ALgorithm 3.1 except the ruLe selection method.)

Algorithm 3.2: Parsing for SGSDTT with a fixec strdtegy.

Input. An SGSDTT F=(G, L, r, R), Gz(V, E, P, S) .,nd an input tree pair

<r ,t>.

Output. AL the correct parses for <r,t>. The oitput "error" it )o

parse exists.

Method.

(1) Por ea'h nonterminK!, A in V, order 'he aLternatvs in R for A in

descending order of magnitude of their associdted probabiLities. Let

A be the index for the ith alternate of A. Let A. be the index for
10 11

the jth alternate in R withi respect to A. in P.
10

(2) Let <u,v> be a new tree pair. A 4-tuple (X, b, t, k) will be useo

to denote the configuration of each node in a tree:

(a) X denotes the nonterminal of the node before it is rewritten.

A
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(b) b denotes the terminal of the node after it is rewritten.

(c) L denotes the Label of the production rule for rewriting tne

node.

(3) let X = S, i=, <u,v> = <(S, , 0, 1), (S1, , 0, 1) >.

(4) Select the first rule of P for X. j=1.

(5) replace node (X, , L, K) of u with rule X. in P. If X is XJo jo

biB1 , B2 , .. B m , then replace the node with (X, 0, 3, i)L(B1, , U,

i), .. .in , 0, i)].

(6) Check compatibility for u and r, if compatibLe go to (7), else go

to (11).

(7) For each node (X , 0, k) of v, where n is any number, repLocL It

with ruLe X. in R. If a node in X is a termindL t, it Is written au

(Xn b, j, i), if a node in X. is a nonterminaL bm, it is written it

(Bi 0, i), go to (8).

(8) Check compatibility for v and t, if compdtiotte, go to (9) ctse

(12).

(9) Check if there is any nonterminaL nooe Left in u, it yes, Let X ue

the next nonterminal, i=i+I, go to (4), if not, go to (10).

(10) Check compatibility for u and r, v and t, if compatible, tino the

parse by tracing down tree u, report success and go to (12), if not, go

to (12).

(11) delete the subtree just being added to u, restore its root with

(X, , j, k). go to (13).

(12) delete the subtree just being added to u, restore its root with
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(X, , j, k), deLete the subtrees being added to v, restore their roots

with (Xn, , j, k) go to (13).

(13) check if there are new rules avaiLable for X, if yes, set j=j+1.

go to (5), if not go to (14).

(14) If X=S, then finished, exit, if not, then backtrack, take the

immediate father of node (X, , j, k) as new X, i=i-1, and go to (4)

(Figure 3.2 shows a flow chart for this algorithm).

Algorithm 3.3: Parsing for SGSDTT with a random strategy.

Input. An SGSDTT F=(G, L, r, R), G=(V, z, P, S) and an input tree pair

<rt>.

Output. ALL the correct parses for <r,t>. The output "error" if no

parse exists.

Method.

(1) For each nontermina A in V, order the alternates in R tor A. Let

A. be the index for the ith aLternate of A. Let A ue the index for
10

the 3th dlternate in R with respect to A in P.

(2) Let <u,v> be a new tree pair. A 4-tuoe 'X, o, L, k) wiLL be useo

to denote the configuration of each node in d tree:

(a) X denotes the nonterminal of the node before it is rewritten.

(b) b denotes the terminaL of the node after it is rewritten.

(c) Z is a register denoting which rules have been appLied tor the

node before.

(d) k denotes the sequence number for counting the sequence of

rule applications.

(3) let X = S, i=l, <u,v> = <(S, , 0, 1), ($1, , 0, 1) >.

(4) Select the first rule of P for X statistically, set j = the index

i1
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of the rule.

(5) repLace node (X, , L, k) of u with rule X. in P. If X is X -Jo JO

biB1, B, ... , Bm], then replace the node with (X, b, ', i)L(B1, , 0,

i), ..., (Bm, , 0, i)], V = (U OR y), where y = 2], the Jth bit of the

binary form of y is 1, showing that the jth ruLe of X is now being

applied.

(6) Check compatiLlity for u and r, if compatible go to (7) else go to

(11).

(7) For each node (Xn, , 0, k) of V, where n is any number, replace it

with rule X. in R. If a node in Xn is a terminal b, it is written ds

(Xn, b, IL', i), if a node in Xjn is a nonterminaL Bm, it is written as

(B m, , 0, i), go to (8).

(8) Check compatibility for v and t, if compatible, go to (9) eLsv

(12).

(9) Check if there is any nonterminal node left in u, if yes, let X oe

the next nonterminal, i=i+1, go to (4), if not, go to (10).

(10) Check compatibility for u and r, v and t, it compatibLe, fino the

parse by tracing down tree u, report success and go to (12), if not, go

to (12).

(11) delete the subtree just being added to u, restore its root with

(X, , j, k). go to (13).

(12) delete the subtree just being added to u, restore its root with

(X, , j, k), delete the subtrees being added to v, restore their roots

with (Xn, , j, k) go to (13).

(13) check if there are new rules available for X, if yes, select next

rule for X statistically, set j the index of the rule, go to (5), if



82

not go to 
(14).

(14) If X=S, then finished, exit. If not, then backtrack, take the

immediate father of node X, , j, k) as new X, i=i-1, and go to (4)

(Figure 3.3 shows a fLow chart for this aLgorithm).
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For each nonterminal A, arrange the alternates of A
in descending order of the magnitude of associated
probability.

X=S

ta" i r, t I le
X

r-ri te X of 71

t kv n- t .I c baci, t rac,,
,r fu r X

t i t) I e

re t' A of
ve,

re.rit,- X;" of v

"'P t it-, I e

I tike 
nextno, t e i ';" I s ve,

t e i I vai I t) I

collvi t I t i,

Figure 3.2 Row chart for the parsing of an SGSDTT with a fixec
strategy
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CHAPTER 4

AN APPLICATION OF TREE TRANSLATION TO TRAFFIC IMAGE SEQUENCE ANALYSIS

4.1 Introduction

This chapter gives an illustrative exampLe of appLying the tree

transLation model described in Chapter 3 to the design of an automatic

traffic image sequence analysis system. Traffic image is a popular

subject of study in time-varying image anaLysis. The input of the

analysis system is assumed to be a sequence of images of a traffic

intersection scene. An example is shown in Figure 4.1. in this system,

each input image is divided into a set of fixed-size, fixed-position

windows. Each image is then represented as a tree of which each node

corresponds to a specific window in the image. Each node is Labeled to

indicate the occurrence or nonoccurrence of a vehicle in its

corresponding window. A tree translation scheme is then usea to

describe the motion of the vehicles in the image sequences. Matching of

vehicles in different images is performed in the form of a tree

transLation parsing.

4.2 Scene Representation

4.2.1 Image representation

Each image is first divided into a set of windows. An appropriate

window size is selected so that each window contains at most one
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(b)

Figure 4.1 (a) SampLe image (b) Data coLLection environment

Ij
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vehicle. In general, the window Length selected should not be greater

than the length of the smallest vehicLe. Window size could be set at a

very small value. However, a smaller window size will result in a more

complex translation scheme. There are many ways to divide the image.

An example is shown in Figure 4.2. Only a part of the road area is

considered. A tree representation for the image is also shown in Figure

4.2. Each window corresponds to a node in the tree representation

regardless there is a vehicle in this window or not. Each vehicle is

considered as only a point. This point could be the centroid, or any

easily-recognizable corner-point of the vehicle. But after this

reference point is selected, this point should be used consistently for

each vehicle in the whole image sequence. The centroid of a vehicle

(considering only the x-y plane) is selected in this system. A

vehicle's position is represented by the location of its centroid. Even

though one large vehicle could occupy more than one window, only the

window where this vehicle's centroid resides is considered as containing

this vehicle. If no vehicle occurs in a window, then the corresponding

node of this window is labeled by '0'. If there is a vehicle in a

window, then the corresponding node is labeled by the quantization value

of this vehicle's orientation (see Figure 4.3). Additional information

(includes vehicle size, actual centroid position, orientation angle) is

attached to the node for other purposes (e.g. speed calculation,

clearing of ambiguity occurring in tree translation parsing). The

determination of a vehicle's orientation and centroid position will be

discussed later. An ambiguity of tree translation parsing means that

different time-varying activities between images result in the same
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Figure 4.2 Divided intersection area and its tree representation.
(The root of the tree is represented by an encircLed node.)

3
4 2

5 ~

6 8
7

Figure 4.3 Orientation primitives
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sequence of trees.

4.2.2 Motion representation

Tree transLation rules are used to represent vehicle movement.

Only the movement from one window to another is describea. The movement

within the same window is not considered. But the information about

vehicle's centroid position and orientation is attached to the node.

This information can be used if necessary. it is assumed that each

vehicle can move no more than the Length of the smallest vehicle between

two consecutive images.

Example 4.1: Figure 4.4a shows an intersection area being divided into 4

windows. One vehicle is coming in from the south while another one is

moving toward the south. The following rules are required for this

movement:

S 7 0 B 0 0

A B,A B C,C

A 0 , 7 C+0,3

where 0 means no vehicle existence and i means the existence of a

vehicle in direction i, 1 < i < 8.

Example 4.2: Figure 4.4b shows that one vehicle is moving from the north

to the west and two others are moving from the south to the north. Both

the (i-1)th and the ith images have the same intersection content.

There are two interpretations for the vehicle moving west. Either the
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(b)

Figure 4.4 Intersection area contents. ("' sign indicates the
existence of a vehicle in that direction.)
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same vehicle exists in the same window for both images or the one in the

(i-1)th image has left the intersection area and a new one is appearing

in the ith image. A similar interpretation also holds for those two

vehicles moving north. There can be four different interpretations for

the variation between the (i-1)th and the ith images. But only one set

of translation rules is needed to describe this image pair.

S* 6 6 B - 3 3/\ /\ I
A B,A B C,C

A 0 , 0 C-3,3

From the assumption about vehicle speed, this problem is solved by using

vehicle position and orientation values attached to each node of the

tree. For the vehicle with label 6, if the orientation value of the

vehicle in the ith image is greater than that of the vehicle in the

(i-1)th image, then it indicates that the vehicle in the (i-1)th image

has left the intersection and the vehicle in the ith image appears for

the first time and traffic flow (the number of passing vehicles) is

increased by one. Otherwise it indicates that the vehicles appearing in

the (i-1)th and the ith images are the same ones. (Orientation value is

counted counterclockwise) For those vehicles moving north, the y

Loordinate of the front vehicle is used. If the y coordinate of the

front vehicle in the ith image is smaller than that of the front vehicle

in the (i-1)th image, then it indicates that the front vehicle in the

(i-1)th image has left the intersection, the front vehicle in the ith
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I I I I I i

(a)

(b)

H-4 4-- I
I IT' il ,

(c)

Figure 4.5 Conditions of the (i-1)th and ith images for which the use
of attribute value is required. (Each one of (a' (b) (L)
represents one of four similar cases. Blank windows could
contain vehicle or not. The attribute values of noae
representing lower-right window will be used for case (a)
and (b). For case (c) the attribute values of the top-
right window will be used.)
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image was the rear vehicle in the (i-l)th image, the rear vehicle in the

ith image appears for the first time and the traffic flow is increased

by one. Otherwise it indicates that the front vehicles in both the ith

and the (i-1)th images are the same one and so are the rear vehicles.

There are also some other similar cases which require the use of

attribute values of each node to resolve such an ambiguity. Their

corresponding translation rules are specified for the requirement of the

comparison between node attribute values of 2 input trees. Figure 4.5

shows the various cases in which a comparison of node attribute value is

required.

4.3 Scene Analysis

4.3.1 Feature extraction

Due to the similar property in feature extraction between this

experiment and You and Fu's shape recognition experiment [13], the

algorithms for boundary following and boundary smoothing described in

C13] are applied for feature extraction.

The first step in feature extractior is threshold selection.

Because of the flat black paint on the models, the vehicles look

uniformly dark and should create a peak in the high gray level region of

the histogram. The light background is supposedly uniform too and

create a peak in the low gray level region of the histogram. A typical

histogram of the experiment is shown in Figure 4.6. The pcak at gray

level kI is caused by the vehicles. The peak at gray level k2 is caused

by the background. The selected threshold is t.

Algorithm 4.1: Threshold Selection
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Input: A digital picture.

Output: A threshold t.

Method:
(1) Compute the histogram.

(2) Find the peak of the highest gray Level (which usually
corresponds to the object). Let kI  the gray level.

(3) Find the second peak of the histogram besides the one found in
(2). Let k2 = the corresponding gray Level.

(4) Find the Lowest valley between the above two peaks and let t
gray Level corresponding to the valley.

(5) Terminate.

After a threshold is found, the boundary for each vehicle can be

traced out. The boundary is defined as a connection of edges between

the object and the background. The boundary is coded by unit vectors

with horizontal and vertical directions. Each boundary is traced out by

the following boundary following algorithm which is Led by the contents

of a 2x2 window. Figure 4.7 shows the four possible configurations.

The pixels A, B, C, and D are defined relative to the boundary vector P.

The object is to the right of P, so that A is darker than the threshold

t- The background is to the left of P, so that C is lighter than t. In

the following algorithm, ux and uy are the unit movements, or unit

vectors, in the X and Y directions respectively. A, B, C, D denote the

coordinates of the pixels. G(B) is the gray level of the pixel

indicated by B. F is the first pixel of an object detected by scanning

the image.

Algorithm 4.2: Boundary Following (You and Fu [133)

Input: F, ux, uy, and threshold t.

Output: A boundary chain U of i unit vectors.
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0k2 t. kl

Figure 4.6 A typical histogram of the experiment

BC

(a) (b)

P

B D

(c) (d)

Figure 4.7 Four possible configurations of boundary following window
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Method:

(1) Set P = ux, i = 1, UO1) = P

A = F, C = F-uy, S C, go to (3)

(2) If (S = C) then terminate

otherwise i = i+I, UOi) = P i

(3) D = C+P

If (G(D) < t) then go to (4)

otherwise P = C-A, A = D, go to (2)

(4) B = A+P

If (G(B) < t) then go to (5)

otherwise A = B, C = D, go to (2)

(5) C = B, P = B- go to (2)

The output from the above boundary following algorithm is a string

of unit vectors. Due to the digitization grid, there are many zig-

zag's. A smoothing method (You and Fu £13)) is applied to transform a

string of unit vectors into a string of longer vectors. This method is

defined in the form of an attributed finite transducer.

In the following definition, qj's are attributed states. Each

state qj represents a subchain sj which is accepted by not translated,

and which is described by the associated attributes. Xv denotes a

series of unit vector v, or I times v. -v is the negative of v, i.e.,

-v and v have the same Length but opposite directions. A A 8 denotes

that B follows A. 6 is a mapping from Q x I, under condition C, to

finite subsets of Q x 0*. The mapping performs when condition C is

true. For each state transition, there is a set of attribute rules.
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The attributes of a state may be unit vectors or numbers. In the

transition ruLe, i, m, n, v, u are unit vectors and p, q, Z, k are

numbers. The attribute conditions for a transition are described above

the right arrow. For each transition, the input unit vector is compared

with the vector attributes and the attribute conditions are checked.

Then the machine goes to the next state with the appropriate output and

transfers the attributes according to the attribute ruLes. Each

expression of the output is a vector c 0. An exampLe of the smoothing

effect of this transducer is shown in Figure 4.8.

Definition 4.1: Attributed Finite Transducer A

A is a 6-tuple, (Q, I, O, 6, S, F).

I = the input set consisting of 4 unit vectors and an end marker $,

{(1,0), (0,-I), (-1,0) , (0,1), $

0 = the output set, {(nl,n 2 )(n i = O,n3 3 0) or

(n = ±1, n3 -i = any integer), i = 1,21

Q = a set of states with attributes, (qjjj 0,...,9)

qO: sO = X, empty

ql : sl has one unit vector v

q2 Lv: s2 = tv, - , t > 1
tv

v
q3v'u: s3 = v A u, -1 u (or_)
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.1

(a)

(b)

Figure 4.8 (a) Detected boundary (b) Smoothed boundary
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tv
q4 LV s4 =v AU, ---IU (orj) t > 1

V

q5vu S5 =v Au A-v, hJ u (or)

q6 S6 = v A u A v,

i V

q 7 1~,v..u,k :s7 t v A u A kv, ~ (r'
kv

V
q8 VI ': s8 v A lu, L__. ~ )i

iv
q9 z,v,uk: s9 k v A u A kv A -u, - j(or

I > 1, k >1

S = the initiaL state qo

F =a set of finaL states, {qO}

(qi mm) - (q V - M, 4-+ 2

(ql ,i) - (q3 V'' ), v - m, u - i
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(q2 P,m) - (qz L 4 ), v 4-M, B- p+l

(q2 ;)M. ) - (q4 ,4), -*01 p, v 4- m, u 4

(q3 ,m) - (q6 ,0), v 4-m, u 4- nl

(q3 m,' ) - (q ll~ ) v ~-m, u - n, B -2

(q3 ,-m) -~(q5 ,0), v ~-m, u +n
m,fl V,U'

P, v- 4, m

(q4 m
p,rf,fl x,.v,uX k 1, u n-f

(q4 pmn-in) -~(q3 V,PM), v n U ,u 4V

(q4 p ,~n) -~(q2 t,vl pm), x. 2 v n-

(q5 m,-n) -~ (qO,O)

(q5 ,-m) (q2 ~ ,m+n), L -2, v 4- -m
m,n v

(q5 Aln ) -~(q
2
3.,4) L 2, v n-r

m n Zv~ukl),u *n, k+1
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(q6 m, n) -~(qO,m+i m+n)

(q 6 m,lm) (q7 t£~uk 1) , k n-

v m, p

(q7 pm~qlm) (q 4-uk ) u ~-n, k q+l

p>2q
* (qi ,(p-l)m/ 2qm+n), v n-

V

q/2<p<2q
* (ql (p+q)m+n), v n-f

p<q/2 -qp

(q42.,,Ul2pm+n), v m

k q
(q pm~~q-h (9 'VUll )v m

u nf

(q8 m ,n) (q8 VL,, 0), u 4- nl

(8m,.q,n'M



q<4q-
(q 4 ,~m+n) v +- n

q>4 Leq-2

*(q4~ t,iii'+2n) v n-f

(q8~u 4 m~~n

q <4 + q-1

U +- -M

q>4 L *q-2

+ (49,, m+2n) v 4- n

U *-M

.1 mn+n+1

t~ 2
(q9 p,m,n,q'fl) +(q

2t, (p+q)m~n), v +- -n

v 4- -n

(qO,$) ( qO,s)

(qlm,$) 4- qO,m)
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(q2 pm$) + (qOpm)

(q3 m,n$) - (qOm+n)

(q4 p $) # (qQ,pm+n)

(q5mn,$) - (qO,n)

(q6 m,n$) - (qO,2m+n)

(q7p,m,n,q,$ ) - (qO,(p+q)m+n)

(q8gm.,q,nO $ )  (qO,m+qn)

(q9 p,m,n,q$) (qO,(p+q)m)

4.3.2 Shape analysis

Consider the top view first. An attributed shape grammar is

adapted for vehicle shape representation [13]. To find the orientation

and the centroid position of a vehicle, special symbols are marked in

the production rules of the shape grammar to specify which pair of angle

points can be used to find the orientation and which pair of angle

points can be used to find the centroid position. Suppose that a

derivation of a shape contour is S F1AI ... FA. ... FjA . m

where F's are curve primitives and A's are angle primitives, and it is

known in the grammar inference stage that the direction of the line

j
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segment extending from the point of angle A to the point of angle A.
1 3

decides the orientation of this vehicle and ;t is also known from

parsing that this derivation generates the input boundary string V1
Vp ... V ... Vn with substring V ... Vq mitching Fi+I ... F.

Then the position of angle A i (A.) is the same as the position of the

breaking point between vectors Vp_ 1 and Vp (Vq and V q+). Therefore the

orientation of this vehicle is decided with the knowledge of x and y

coordinates of these two breaking points which is obtained in the

feature extraction stage. The centroid position is calculated

similarly. Suppose that the midpoint of the line segment connecting the

angles Ak and A is the centroid. Then the centroid position is decided

from the x and y coordinates of the angle points of A and A You and

Fu's [13) PEE Earley's parser is used for vehicle shape recognition.

For example, consider a vehicle shape shown in Figure 4.9. The

shape is represented as S 4 FI A IF2A2F3A A4 . The midpoint of the line

segment connecting the angles A2 and A4 is the centroid. The direction

of the line segment connecting the angles A1 and A2 determines the

orientation of the vehicle. After knowing that A1  is located at

(xl,Yl), A2 is located at (x2 ,y2 ) and A3 is located at (x3,Y3 ), then the

centroid position is found to be ((x2+x4 )/2, (y2 +y4 )/2) and the

orientation of the vehicle has the slope (y2-yl)/(x 2-x1 ). The question

about whether the actual direction should be from A1 to A2 or from A2 to

A, will be discussed shortly. Strictly speaking, for a simple shape

like the top view of a vehicle, the shape analysis method described

above is not really necessary. For instance, an easy way to calculate

the centroid (x cy c ) of a vehicle is to apply the formula: xc=rxi/n,cc c.
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F2

A t

P t

~Ft

Scarrinq Poinc

Figure 4.9 Arn example of vehicLe shape
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yc -Yi/n, where the summation is taken over all points on the boundary

and n is the total points on the boundary. The orientation can also be

easily determined after searching for the right angles around the

boundary and finding out the longest line segment between these angles.

But compared with this simple method, the method described earlier in

this subsection does serve as a way for the determination of the

centroid and orientation of a general shape.

Due to the symmetrical property of the top view of a vehicle, a

vehicle in any direction could have two possible opposite orientations.

For example, the shape of a vehicle moving northwest could also be

evaluated as southeast - oriented. This problem is solved as follows:

Consider a vehicle located in the lower-right window of the intersection

area. If its shape is detected as horizontally oriented (either to the

east or west), then it is considered as moving east with orientation 1.

Similarly, if its shape is detected as vertically oriented, then it is

considered as moving north with orientation 3. If its shape is

northwest - oriented (in other terms, southeast - oriented), it could

have orientation 4 or 8. this ambiguity is resolved from the knowledge

of the Last image and the assumption about vehicle movement limitation

between consecutive images. Specifically, if there exists a vehicle

with orientation 8 in either the lower-left or the lower-right window of

the intersection area in the (i-1)th image, then this northwest-oriented

vehicle in the lower-right window of the ith image should have

orientation 8 instead of 4. Otherwise this vehicle should have

orientation 4. For a northeast-oriented vehicle in the lower-right

window, there is only one choice: orientation 2. The way of
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determining the orientation of vehicles in the lower-right window

described above also applies to other windows.

When an input image does not represent the top view, the vehicle

shape variation and occlusion problems happen. For shape variation and

simplP occlusion, the problem can still be solved with the help of a

generalized error-correcting PEE parser (GECPEEP) [133. But when the

number of vehicles appearing in the'scene increases, a serious occlusion

would make the extraction of vehicle centroid position and orientation

information very difficult. Therefore, in order to make the monitor

working even under heavy traffic conditions, it would be better to use

the top-view of the scene as the input.

4.3.3 Tree translation parsing

After the tree representation for the ith image is obtained, it is

parsed by the tree translation parser along with the tree representation

for the Ci-1)th image. (Parsing process starts from the second image.)

The translation parser is similar to the one shown in Chapter 3. But as

mentioned before, some configurations of input tree pair still require

the use of attributes attached to the node to decide the actual activity

between two consecutive images. After the parsing, the parser either

reports the output or asks for a comparison of attribute values. (The

conditions requiring the use of attributes and which attributes to be

used have been discussed earlier and illustrated in Figure 4.5.)

4.4 Inference of a Structure-Preserved Tree Translation Schema

The tree translation involved here is structure-preserved (in other

words, substitution transformation only). The inference of the tree
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translation schema is therefore essentially a tree grammar inference

problem: Let E be the input alphabet, A be the output alphabet of a tree

translation and S+ = {<x 1,y1>, <x2,Y2>...J) be the tree translation

sample set. xi and yi have the same tree structure. Form a new

alphabet - x . Transform each tree pair <xiYi> into a single

tree over by combining the label of each node of x. and the Label of

its corresponding node of yi" The tree translation sample set S+ is now

transformed into a set of tree samples. Apply the conventional tree

grammar inference procedure (Moayer and Fu C61]) to infer the tree

grammar which can generate these tree samples. Then transform this tree

grammar into the required tree translation schema by converting each
ab

production rule into a tree translation rule. (e.g. if A /.. is a
B 1

rule of the tree grammar, where a e and b c A. then the converte@ tree
a b

translation rule is A - / .. \ /..\. ). The whole procedure is
8 B B B

given as follows: n n

Algorithm 4.3: Inference of a structured-preserved tree translation

schema

Input: A tree translation sample set S+ = {<xlyl>, x2 ,Y2>...<xnYn>},

where xi and yi have the same tree structure (tree domain),

input alphabet E and output alphabet A.
+r

Output: a tree translation schema which generates S

Method: 1. Let E, = x A, S++ .

2. For each <x,Yi> e S +

add a tree (a: D ) to S + +,

where D is the domain of x. and y,,

a(b) = axi(b)yi (b) for b c D,
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Q and a are the tree function for x. and yi respectively.

3. Infer a tree grammar for S+ +  Moayer and Fu C611):

Step 1: Selection of proper substructures, here the aim is to

select components which have high-repetitive

occurrence.

Step 2: Infer subgrammar G. for each substructure

Step 3: Let Gt be the union of the subgrammars Gi inferred in

step 2. Relabel the variables and eliminate redundant

production rules to eliminate ambiguity and erroneous

generation paths.

4. Form a tree translation schema T(-,E,y,R,S) by adding one

a b ab
rule A B.. \ , .\ to R for each rule A- /.\ of the

BI BI Bn1 B

grammar generated in 3.

Consider the tree translation involved in the traffic scene as an

example. ThE input alphabet and output alphabet are

= 0,1,2,3,4,5,6,7,8). To reduce the number of samples,

consider only the image pairs in which no vehicle exists in the

intersection area of the first image and one vehicle comes into the

intersection area of the second image. The tree translation sample set

contains:

0-0 0-0 0-0 0-0

0 II I,< I I, I I>0 0 0 e 0 0 0 3
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0-0 0-0 0-0 0-4

0 00 4 0 00 0

0-0 0-5 0-0 0-6
< I I, I I>, < I I, I I>,

0 0 0 0 0 0 00

0-0 6-0 0--0 7-0
< III > <I I >

0 0 00 0 00 3

0-0 8-0 0-0 0-0

0 0 00 0 0 80

0-0 0-0 0-0 0-0

< I I , I I > , < I I , I I > ,

0 0 1 0 0 0 2 0

These tree translation sampLes are transformed into trees over x A.

Then a tree grammar is generated from these tree sampLes. For example,
0-0 0-0 00-00

< I I , I I > becomes . The tree sampLe set contains:
0 0 0 2 00 02

00-00 00-00 00-00
I I , I I , I 1
00 02 00 03 00 04

00-04 00-05 00-06

I I I, I I> , < I , .

00 00 00 00 00 00
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06-00 07-00 08-00
I I I I I
00 00 00 00 00 00

00-00 00-00 00-00
I I ,I I, I ,
08 00 01 00 02 00

The resulting tree grammar contains the following rules: t-

00 00
S. /\ s /\

A B1 AI  B2

00 00
S. /\ S . /\

A 1 B3 A I B4

00 00
S. /\ S - /\AI B5 AI B6

A1 85 A1 [
06 07

S. /\ S /\
A 1 B7 A 1 B7

08 00
S. /\ S / \

A1  B7  A2  B7

00 00
S. /\ S. /\

A3 B? A4 67
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00 00
B1  I 2 

A4  C1

00 04
B 31 8.41

( 2 A1

05 06
B 5 1B6 + I

A1  A1

00

87*IA 1

A1 - 00 A2 *08

A3 * 01 A4  02

C1 * 03 C2 
+ 04

where S, A1 .. .,A4, B1 ,...B7, C1 and C2 are nonterminals.

The resulting tree translation schema contains the following

translation rules:

0 0 0 0
S / , /S\ S /\ / \

A 1  1 A 1 B1  A, B2 A1 82

LW1
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0 0 0 0
s. /\ , \s /\ , \

A, B3 A 1  B3 A 1 B4  A 1 B4

0 0 0 0
s. /\ / \ sI /\ /\

A1  B5  A1  B5 AI  B6 A1  86

0 6 0 7
s. / \ , s /\ , \

A1  87 A1  B7 A1  87 A1  B7

0 8 0 0s- / \ , / \ s - /\ / /\
A1  B7 A1  B7 A2 B7 A2 B7

0 0 0 0
s. /\ , / s - /\ , /\

A3  B7 A3  87 A4  B7  A4  B7

0 0 0 0
B1 .I .1 B2 - I , I

A4  A4  C CI
A4 A4 c1 c1

0 0 0 4

3  B4C2 1 A A1

0 5 0 6
B5 1 1 B 6 - I , I

A1 A1 A1 A1
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0 0
B I , I

A A1

A 1 . 0 "0 A2 0 "8

A3 + 0 ,1 A4 + 0 ,2

CI 1 0 ,3 C 2 -1 0 ,4

Since there are 4 windows in the intersection area, there are 4

nodes in each tree and 8 nodes in each translation pair. There are 9

different possible labels for each node: (0,1,2,...,8}. Theoretically,

there are 94 different trees and 98 different translation pairs. But
0-0 0-0

after deleting some unrealistic cases (e.g., a tree Like i or I is
0-0 0-0 0 5 0 7

not reasonable, a translation pair like < I I , I I > is not possible

0 3 0 0
due to the assumption about speed limitation), there are 25 different

tree patterns and 186 different translation pairs left. These 186

translation pairs are divided into 2 groups. No vehicLe moves out of

the intersection area for each translation pair of group I, while one or

more vehicles have moved out of the intersection area for each

translation pair of group II. Group I consists of 70 members. The 12

translation pairs given in the above inference example are part of these

70 pairs. Group II consists of 116 members. These 116 translation

pairs are further classified into 12 subclasses according to the

specific traffic type. These 12 subclasses are EW, ES, EN, WE, WS, WN,

SE, SW, SN, NE, NW and NS, where E, W, S and N denotes east, west, south

and north respectively and EW represents the subclass of translation
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pairs for which one vehicle has moved from the east to the west ana left

the intersection area, ES represents the subcLass of translation pairs

for which one vehicle has moved from the east to the south, etc. For
0-3 0-0 0-4 0-0

example, < I I , I I > belongs to the subcLass SN and < I I , I I >

0 0 0 0 0 0 0 0

belongs to the subclass EN. There are some translation pairs which
0-3 0-0

belong to more than one subclass. For example, < I I , I I > belongs
7 0 0U

to both subclasses SN and NS.

4.5 Implementation

The whole experiment of traffic image sequence analysis was set up

in the laboratory of pattern processing and advanced automation at

Purdue University. The set-up for data collection is shown in Figure

4.1.b. A white background with black vehicles is used for the traffic

scene. Road areas and non-road area were specified. The digital

picture sequence was taken directly through a TV scanner which is

located above the traffic intersection. The digitization process was

controlled interactively through a PDP 11/45 computer in the laboratory.

Before digitization, we adjusteo the relative distance and the focus of

the TV scanner to obtain a reasonably clear picture on a TV monitor.

Then everything kept stationary except the vehicles during the

digitization of the whole image sequence. After each digitization of a

picture, the vehicles were moved to new locations for the next picture.

The traffic analysis system using the proposed tree translation

parsing is implemented in Fortran IV under Unix system on a PDP11/45

computer. The average time required for the analysis of one image is

about 15 seconds (the actual computer time for each individual image

depends on the number of vehicles in the image). About 90% of the time
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Start

Feature Extraction
boundary vector string generator

:4

Shape analysis i

tree representation generation

Tree translation parsing

Figure 4.10 Flow chart for the analysis of each image (A flow chart for
tree translation parsing is given in Figure 3.1.)
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is spent on the feature extraction and the shape analysis for tree node

Labeling.

Figure 4.11 shows the image contents of some of the image sequence.

Figure 4.12 shows their corresponding tree representations around the

intersection area. The correspondence between the nodes and the

windowed regions is shown in Figure 4.2. The 8 nodes corresponding to

the windows surrounding the intersection area are included to indicate

where the vehicles come from and where they go. Figure 4.13 shows the

traffic information extracted from the image sequence. This experiment

illustrates an example of the application of tree translation models to

the analysis of tirie-varying patterns. In chapter 2, we let L denote

the set of pattern representations of some object occurring at time tl,

L2 denote the set of pattern represenations occurring at time t2 and use

the concept of translation to model the relation between L, and L2 (or

the time-varying process of the pattern representation between time t

and time t2 ). In this traffic scene experiment, the "object" under

study is the content of the intersection region in a traffic scene. LI

and L2 are a set of trees a: D - Z, where D is the tree domain

(0,0.1,0.2,0.2.1} and z is the primitive set (0,1,2,3,...,8}. Actually

L1 and L2 are the same set. As mentioned in section 4.4, L1 (or L2) has

25 patterns and there are 186 possible translation pairs between L1  and

L2. These 186 translation pairs are divided into 2 groups. Group I

involves no traffic flow out of the intersection area. Group 11

involves traffic flow and is further classified into 12 subclasses. At

each time instant t=ti,, the tree representations of the (i-1)th and i-th

images are parsed to decide the membership. If they belong to group i,
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then there is no traffic flow out of the intersection area and no

information update is required. If they belong to group II, then an

action for the specific subclass is taken: update the traffic

information for the specific path. For example, the tree

representations of the intersection area for image SC01 and image SCO2
0-5 5-0

of Figure 4.11 are I I and I I which are generated by the following
00 1 0

translation rules:

0 5 5 0
Sl /\ , \ B12 . I , I

A3 812 A3 B12 C3 C3

A3 . 0 , 1 C3 - 0 , 0

They belong to group I. Therefore no action is taken and the traffic

information is unchanged. At the next time instant, the tree
5-0

representations for image SC02 and image SC13 of Figure 4.10 are j
0-0 10

and I I , which are generated by the following translation rules:
0 1

5 0 0 0S2 - I \l , - i I I
A12 B17 A12 B17 C13 C13

A12 - 1 , 0 C13 - 0 , 1

They belong to the subclass EW of group II. Therefore the traffic

information is updated and the number of vehicles moving from the east

to the west is incremented by one. (In case that a translation pair

belongs to two subclasses as mentioned in section 4.4, then it is

required to update the traffic information of the paths specified for



119

both subclasses.) The image sequence of this experiment does not have

any significance of physical meaning. It is only used to show how the

analysis system is applied. (Since there are 186 possible translation

pairs (in other words, 186 time-varying patterns between consecutive

images), in order to go through all of the time-varying patterns, the

required number of images is far greater than 186. it is similar to the

input sequence required to test every state transition of a finite-state

machine.) This experiment shows a form of pattern recognition system

under time-varying situation. It also demonstrates one way to extract

information from an image sequence through a series of pattern

translation operations. On the other hand, although the testing image

sequence is successfully analyzed, further improvement of the system is

still required. Similar to the cases of Chow and Aggarwal [43] and

Aggarwal and Duda [42J, this system assumes a fairly simpLe image

condition for preprocessing. Therefore, to make the system working

under noisy conditions, more sophisticated feature extraction technique

will certainly be required.

4.6 Conclusions and Discussions

While many traffic scene-related research activities [23,68,69,803

concentrate on segmentation techniques, the proposed traffic analysis

system emphasizes the representation of vehicle motion and assumes that

there is little difficulty in segmentation, which is the main assumption

of the system. The advantages of the proposed system include: (1) each

moving object (vehicle) is allowed to have movement ranging from 0 to

the length of the smallest vehicle between consecutive images, (2) the

matching process is performed through a tree translation parsing which
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is very efficient in processing, (3) there is no need to do

sophisticated prediction using information of the past history, (4)

there is no need to keep the past information except tne tree

representation of the Last image, and (5) the ability to describe an

image scene and to model an image sequence. The experiment conducted

here is j 2-Lane traffic. When the number of traffic Lanes increases,

the required analysis system is essentiaLLy the same except that more

windows are required and the corresponding tree representation contains

more nodes. Figure 4.14 shows a 4-lane example. There are 16 windows

in the intersection area. The scene is represented as a tree with 16

nodes.

.ir
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Figure 4.11 Image contents of the first 8 images in the testing image

sequence
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Scol SCO5
0 0 0 0

0-0-5-0 U-0-5-0

I I I 1
1-0 0-0 0-0 0-0

0 3 0 35

SC02 SC06
0 0 0 0
I I I ___

0-5-0-0 0-5-0-0

0-1 0-0 1-0 U-0

0 3 0 3

SC03 SCO

00 U 0

5-0-0-0 5-0-0-0

0-0 I-0 0-1 0-0I I I I
0 3 0 3

SC04 SCO8
0 0 0 0

0-0-0-5 0-0-0-0

I I II
0-0 0-I 0-0 1-0

0 3 03

Figure 4.12 Tree representations for the images of
Figure 4.11.
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I.N. EW ES EN WE WS WN SE SW SN NE NW NS
2 0 0 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 1 0 0 0 0 0 0 0 0
5 1 0 0 1 0 0 0 0 0 0 0 0
6 1 0 0 1 0 0 0 0 0 0 0 0
7 2 0 0 1 0 0 0 0 0 0 0 0
8 2 0 0 1 0 0 0 0 0 0 0 0
9 2 0 0 2 0 0 0 0 0 0 0 0

10 2 0 0 2 0 0 0 0 0 0 0 0
11 2 0 0 2 0 0 0 0 0 U 0 0
12 2 0 0 2 0 0 0 0 0 0 0 0
13 2 0 0 2 0 0 0 0 0 0 0 0
14 2 0 0 2 0 0 0 0 0 0 0 0
15 2 0 0 2 0 0 0 0 0 0 0 0
16 2 0 0 2 0 0 0 0 0 0 0 0
17 2 0 0 2 0 0 0 0 0 0 0 0
18 2 0 0 2 0 0 0 0 0 0 0 0
19 2 0 1 2 0 0 0 0 0 0 0 0
20 2 0 1 2 0 0 0 0 0 0 0 0
21 2 0 1 2 0 0 0 0 0 0 0 0
22 2 0 1 2 0 0 0 0 0 0 0 0
23 2 0 1 2 0 0 0 0 0 0 U 0
24 2 0 1 2 0 0 0 1 0 0 0 0
I.N.---image number
EW --- no. of vehicles going from east to west
ES ---- no. of vehicLes going from east to south
EN --- no. of vehicles going from east to north
WE ---- no. of vehicles going from west to east
WS ---- no. of vehicles going from west to south
WN ---- no. of vehicles going from west to north
SE ---- no. of vehicles going from south to east
SW ---- no. of vehicles going from south to west
SN ---- no. of vehicles going from south to north
NE ---- no. of vehicles going from north to east
NW ---- no. of vehicles going from north to west
NS ---- no. of vehicles going from north to south

Figure 4.13 Traffic information extracted from
the image sequence
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

5.1 Conclusions

A syntactic method for the analysis of time-varying image patterns

is proposed and studied. This method utilizes a translation schema to

model time-varying properties. A syntactic deformation model is first

appLied to transform the i-th image into the (i+1)-th image of an image

sequence. Then the concept of translation in formal language theory is

used as a mechanism to characterize the dynamic process of the sequence.

In order to analyze high-dimensional patterns, the string translation

schema is extended to that for trees. Formulation of stochastic

translation is also presented for the modeling of stochastic properties

of time-varying patterns.

A traffic scene analysis problem is analyzed using the proposed

method. Each input image is presented as a tree structure. Tree

translation is used to model the variation of image content between

consecutive images. A parsing algorithm for the tree translation is

applied to match vehicles in each pair of consecutive images. The

advantages of this system are: (1) Each moving object is allowed to have

larger flexible movement between consecutive images, (2) the matching

process is performed through a tree translation parsing which is very

efficient in processing, (3) there is no need to do sophisticated
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prediction using information of the past history, (4) there is no neea

to store the past information except the last image, and (5) has the

potential for simulation of the time-varying process. This system

assumes little difficulty in the segmentation of moving object, which is

its main limitation.

5.2 Suggestions for Further Research

The problem of time-varying pattern analysis is a new research

topic and is getting increasing attention. Although the results from

the proposed syntactic method appear to be quite satisfactory, there are

still some topics requiring further investigations.

(1) The translation models studied in this report include string

translation and tree translation models. There are some other patterns

which are better being represented as graphs [10,96,98,991. Recently

Jacobus, Chien and Selander analyze the similarities in the structure of

abstract forms produced from stereoscopic motion picture sequences using

a graph matching technique [72]. A pair of images contains the scenes

of a 3-D object before and after the movement. The informtion

concerning the boundary and surface of the object at each image is

represented as a graph. A graph matching method is used to match the

corresponding parts of the two graphs (assuming small overall movement).

In order to make graph representation applicable for general time-

varying patterns, it would be desirable to study graph language

translation and stochastic graph translation.

(2) You and Fu £133 study the syntactic shape recognition using

attributed grammars with promising results. Tsai and Fu [14,96] report

an attributed pattern deformation model and find that sometimes it is
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more powerful tc use attributed pr mitives than discrete primitives. In

order to take attributes into consideration in time-varying pattern

problems, one way is to extend the translation models to translation

models with attributes: attributed string translation, attributed tree

translation and attributed graph translation.

(3) Tree translation is applied to analyze traffic image sequence

in Chapter 4. In order to further understand the usefulness of tree

translation, it would be desirable to study traffic scenes using tree

translation through an extensive simulation experiment.

(4) The problem of cardiac motion analysis is getting more

attentions [91,92,93,94,95]. The use of computerized tomography

technology is also becoming more popular. It would be interesting to

study the applicability of the translation models described in this

research to the problem of heart wall motion representation, or more

generally, to the problem of representation of data extracted from

computerized tomography.
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